8 research outputs found

    Efficient and robust monolithic finite element multilevel Krylov subspace solvers for the solution of stationary incompressible Navier-Stokes equations

    Get PDF
    Multigrid methods belong to the best-known methods for solving linear systems arising from the discretization of elliptic partial differential equations. The main attraction of multigrid methods is that they have an asymptotically meshindependent convergence behavior. Multigrid with Vanka (or local multilevel pressure Schur complement method) as smoother have been frequently used for the construction of very effcient coupled monolithic solvers for the solution of the stationary incompressible Navier-Stokes equations in 2D and 3D. However, due to its innate Gauß-Seidel/Jacobi character, Vanka has a strong influence of the underlying mesh, and therefore, coupled multigrid solvers with Vanka smoothing very frequently face convergence issues on meshes with high aspect ratios. Moreover, even on very nice regular grids, these solvers may fail when the anisotropies are introduced from the differential operator. In this thesis, we develop a new class of robust and efficient monolithic finite element multilevel Krylov subspace methods (MLKM) for the solution of the stationary incompressible Navier-Stokes equations as an alternative to the coupled multigrid-based solvers. Different from multigrid, the MLKM utilizes a Krylov method as the basis in the error reduction process. The solver is based on the multilevel projection-based method of Erlangga and Nabben, which accelerates the convergence of the Krylov subspace methods by shifting the small eigenvalues of the system matrix, responsible for the slow convergence of the Krylov iteration, to the largest eigenvalue. Before embarking on the Navier-Stokes equations, we first test our implementation of the MLKM solver by solving scalar model problems, namely the convection-diffusion problem and the anisotropic diffusion problem. We validate the method by solving several standard benchmark problems. Next, we present the numerical results for the solution of the incompressible Navier-Stokes equations in two dimensions. The results show that the MLKM solvers produce asymptotically mesh-size independent, as well as Reynolds number independent convergence rates, for a moderate range of Reynolds numbers. Moreover, numerical simulations also show that the coupled MLKM solvers can handle (both mesh and operator based) anisotropies better than the coupled multigrid solvers

    Multilevel Preconditioning of Discontinuous-Galerkin Spectral Element Methods, Part I: Geometrically Conforming Meshes

    Get PDF
    This paper is concerned with the design, analysis and implementation of preconditioning concepts for spectral Discontinuous Galerkin discretizations of elliptic boundary value problems. While presently known techniques realize a growth of the condition numbers that is logarithmic in the polynomial degrees when all degrees are equal and quadratic otherwise, our main objective is to realize full robustness with respect to arbitrarily large locally varying polynomial degrees degrees, i.e., under mild grading constraints condition numbers stay uniformly bounded with respect to the mesh size and variable degrees. The conceptual foundation of the envisaged preconditioners is the auxiliary space method. The main conceptual ingredients that will be shown in this framework to yield "optimal" preconditioners in the above sense are Legendre-Gauss-Lobatto grids in connection with certain associated anisotropic nested dyadic grids as well as specially adapted wavelet preconditioners for the resulting low order auxiliary problems. Moreover, the preconditioners have a modular form that facilitates somewhat simplified partial realizations. One of the components can, for instance, be conveniently combined with domain decomposition, at the expense though of a logarithmic growth of condition numbers. Our analysis is complemented by quantitative experimental studies of the main components.Comment: 41 pages, 11 figures; Major revision: rearrangement of the contents for better readability, part on wavelet preconditioner adde

    Local Fourier analysis for saddle-point problems

    Get PDF
    The numerical solution of saddle-point problems has attracted considerable interest in recent years, due to their indefiniteness and often poor spectral properties that make efficient solution difficult. While much research already exists, developing efficient algorithms remains challenging. Researchers have applied finite-difference, finite element, and finite-volume approaches successfully to discretize saddle-point problems, and block preconditioners and monolithic multigrid methods have been proposed for the resulting systems. However, there is still much to understand. Magnetohydrodynamics (MHD) models the flow of a charged fluid, or plasma, in the presence of electromagnetic fields. Often, the discretization and linearization of MHD leads to a saddle-point system. We present vector-potential formulations of MHD and a theoretical analysis of the existence and uniqueness of solutions of both the continuum two-dimensional resistive MHD model and its discretization. Local Fourier analysis (LFA) is a commonly used tool for the analysis of multigrid and other multilevel algorithms. We first adapt LFA to analyse the properties of multigrid methods for both finite-difference and finite-element discretizations of the Stokes equations, leading to saddle-point systems. Monolithic multigrid methods, based on distributive, Braess-Sarazin, and Uzawa relaxation are discussed. From this LFA, optimal parameters are proposed for these multigrid solvers. Numerical experiments are presented to validate our theoretical results. A modified two-level LFA is proposed for high-order finite-element methods for the Lapalce problem, curing the failure of classical LFA smoothing analysis in this setting and providing a reliable way to estimate actual multigrid performance. Finally, we extend LFA to analyze the balancing domain decomposition by constraints (BDDC) algorithm, using a new choice of basis for the space of Fourier harmonics that greatly simplifies the application of LFA. Improved performance is obtained for some two- and three-level variants

    Bilinear Immersed Finite Elements for Interface Problems

    Get PDF
    In this dissertation we discuss bilinear immersed finite elements (IFE) for solving interface problems. The related research works can be categorized into three aspects: (1) the construction of the bilinear immersed finite element spaces; (2) numerical methods based on these IFE spaces for solving interface problems; and (3) the corresponding error analysis. All of these together form a solid foundation for the bilinear IFEs. The research on immersed finite elements is motivated by many real world applications, in which a simulation domain is often formed by several materials separated from each other by curves or surfaces while a mesh independent of interface instead of a body-fitting mesh is preferred. The bilinear IFE spaces are nonconforming finite element spaces and the mesh can be independent of interface. The error estimates for the interpolation of a Sobolev function in a bilinear IFE space indicate that this space has the usual approximation capability expected from bilinear polynomials, which is O(h2) in L2 norm and O(h) in H1 norm. Then the immersed spaces are applied in Galerkin, finite volume element (FVE) and discontinuous Galerkin (DG) methods for solving interface problems. Numerical examples show that these methods based on the bilinear IFE spaces have the same optimal convergence rates as those based on the standard bilinear finite element for solutions with certain smoothness. For the symmetric selective immersed discontinuous Galerkin method based on bilinear IFE, we have established its optimal convergence rate. For the Galerkin method based on bilinear IFE, we have also established its convergence. One of the important advantages of the discontinuous Galerkin method is its flexibility for both p and h mesh refinement. Because IFEs can use a mesh independent of interface, such as a structured mesh, the combination of a DG method and IFEs allows a flexible adaptive mesh independent of interface to be used for solving interface problems. That is, a mesh independent of interface can be refined wherever needed, such as around the interface and the singular source. We also develop an efficient selective immersed discontinuous Galerkin method. It uses the sophisticated discontinuous Galerkin formulation only around the locations needed, but uses the simpler Galerkin formulation everywhere else. This selective formulation leads to an algebraic system with far less unknowns than the immersed DG method without scarifying the accuracy; hence it is far more efficient than the conventional discontinuous Galerkin formulations
    corecore