9,127 research outputs found

    High gain observer for structured multi-output nonlinear systems

    Get PDF
    In this note, we present two system structures that characterize classes of multi-input multi-output uniformly observable systems. The first structure is decomposable into a linear and a nonlinear part while the second takes a more general form. It is shown that the second system structure, being more general, contains several system structures that are available in the literature. Two high gain observer design methodologies are presented for both structures and their distinct features are highlighted

    An energy-based state observer for dynamical subsystems with inaccessible state variables

    Get PDF
    This work presents an energy-based state estimation formalism for a class of dynamical systems with inaccessible/ unknown outputs, and systems at which sensor utilization is impractical, or when measurements can not be taken. The power-conserving physical interconnections among most of the dynamical subsystems allow for power exchange through their power ports. Power exchange is conceptually considered as information exchange among the dynamical subsystems and further utilized to develop a natural feedback-like information from a class of dynamical systems with inaccessible/unknown outputs. This information is used in the design of an energybased state observer. Convergence stability of the estimation error for the proposed state observer is proved for systems with linear dynamics. Furthermore, robustness of the convergence stability is analyzed over a range of parameter deviation and model uncertainties. Experiments are conducted on a dynamical system with a single input and multiple inaccessible outputs (Fig. 1) to demonstrate the validity of the proposed energybased state estimation formalism

    An Energy-Based State Observer for Dynamical Subsystems with Inaccessible State Variables

    Get PDF
    This work presents an energy-based state estimation formalism for a class of dynamical systems with inaccessible/ unknown outputs, and systems at which sensor utilization is impractical, or when measurements can not be taken. The power-conserving physical interconnections among most of the dynamical subsystems allow for power exchange through their power ports. Power exchange is conceptually considered as information exchange among the dynamical subsystems and further utilized to develop a natural feedback-like information from a class of dynamical systems with inaccessible/unknown outputs. This information is used in the design of an energybased state observer. Convergence stability of the estimation error for the proposed state observer is proved for systems with linear dynamics. Furthermore, robustness of the convergence stability is analyzed over a range of parameter deviation and model uncertainties. Experiments are conducted on a dynamical system with a single input and multiple inaccessible outputs (Fig. 1) to demonstrate the validity of the proposed energybased state estimation formalism

    Detection of replay attacks in CPSs using observer-based signature compensation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a replay attack detection method that addresses the performance loss of watermarking-based approaches. The proposed method injects a sinusoidal signal that affects a subset, chosen at random, of the system outputs. The presence of the signal in each one of the outputs is estimated by means of independent observers and its effect is compensated in the control loop. When a system output is affected by a replay attack, the loss of feedback of the associated observer destabilizes the signal estimation, leading to an exponential increase of the estimation error up to a threshold, above which the estimated signal compensation in the control loop is disabled. This event triggers the detection of a replay attack over the output corresponding to the disrupted observer. The effectiveness of the method is demonstrated using results obtained with a quadruple-tank system simulator.Peer ReviewedPostprint (author's final draft

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed

    Expressing an observer in preferred coordinates by transforming an injective immersion into a surjective diffeomorphism

    Full text link
    When designing observers for nonlinear systems, the dynamics of the given system and of the designed observer are usually not expressed in the same coordinates or even have states evolving in different spaces. In general, the function, denoted τ\tau (or its inverse, denoted τ\tau^*) giving one state in terms of the other is not explicitly known and this creates implementation issues. We propose to round this problem by expressing the observer dynamics in the the same coordinates as the given system. But this may impose to add extra coordinates, problem that we call augmentation. This may also impose to modify the domain or the range of the augmented" τ\tau or τ\tau^*, problem that we call extension. We show that the augmentation problem can be solved partly by a continuous completion of a free family of vectors and that the extension problem can be solved by a function extension making the image of the extended function the whole space. We also show how augmentation and extension can be done without modifying the observer dynamics and therefore with maintaining convergence.Several examples illustrate our results.Comment: Submitted for publication in SIAM Journal of Control and Optimizatio

    Stabilization of nonlinear systems in presence of filtered output via extended high-gain observers

    Get PDF
    International audienceWe consider the problem of stabilizing a nonlinear system with filtered output. Given an output feedback control law which satisfies a stability requirement, we consider the case in which the necessary output cannot be measured. The measure is rather the output of an auxiliary stable dynamics in cascade with the system. In place of fully redesign the control architecture, we slightly modify the original control law design by adding a disturbance observer and we recover the desired stability property for the system. The disturbance observer is design as an extended high-gain observer
    corecore