277 research outputs found

    Nonlinear Control of Unmanned Aerial Vehicles : Systems With an Attitude

    Get PDF
    This thesis deals with the general problem of controlling rigid-body systems through space, with a special focus on unmanned aerial vehicles (UAVs). Several promising UAV control algorithms have been developed over the past decades, enabling truly astounding feats of agility when combined with modern sensing technologies. However, these control algorithms typically come without global stability guarantees when implemented with estimation algorithms. Such control systems work well most of the time, but when introducing the UAVs more widely in society, it becomes paramount to prove that stability is ensured regardless of how the control system is initialized.The main motivation of the research lies in providing such (almost) global stability guarantees for an entire UAV control system. We develop algorithms that are implementable in practice and for which (almost) all initial errors result in perfect tracking of a reference trajectory. In doing so, both the tracking and the estimation errors are shown to be bounded in time along (almost) all solutions of the closed-loop system. In other words, if the initialization is sound and the initial errors are small, they will remain small and decrease in time, and even if the initial errors are large, they will not increase with time.As the field of UAV control is mature, this thesis starts by reviewing some of the most promising approaches to date in Part I. The ambition is to clarify how various controllers are related, provide intuition, and demonstrate how they work in practice. These ideas subsequently form the foundation on which a new result is derived, referred to as a nonlinear filtered output feedback. This represents a diametrically different approach to the control system synthesis. Instead of a disjoint controller/estimator design, the proposed method is comprised of two controller/estimator pairs, which when combined through a special interconnection term yields a system with favorable stability properties.While the first part of the thesis deals with theoretical controller design,Part II concerns application examples, demonstrating how the theory can solve challenging problems in modern society. In particular, we consider the problem of circumnavigation for search and rescue missions and show how UAVs can gather data from radioactive sites to estimate radiation intensity

    Attention and Anticipation in Fast Visual-Inertial Navigation

    Get PDF
    We study a Visual-Inertial Navigation (VIN) problem in which a robot needs to estimate its state using an on-board camera and an inertial sensor, without any prior knowledge of the external environment. We consider the case in which the robot can allocate limited resources to VIN, due to tight computational constraints. Therefore, we answer the following question: under limited resources, what are the most relevant visual cues to maximize the performance of visual-inertial navigation? Our approach has four key ingredients. First, it is task-driven, in that the selection of the visual cues is guided by a metric quantifying the VIN performance. Second, it exploits the notion of anticipation, since it uses a simplified model for forward-simulation of robot dynamics, predicting the utility of a set of visual cues over a future time horizon. Third, it is efficient and easy to implement, since it leads to a greedy algorithm for the selection of the most relevant visual cues. Fourth, it provides formal performance guarantees: we leverage submodularity to prove that the greedy selection cannot be far from the optimal (combinatorial) selection. Simulations and real experiments on agile drones show that our approach ensures state-of-the-art VIN performance while maintaining a lean processing time. In the easy scenarios, our approach outperforms appearance-based feature selection in terms of localization errors. In the most challenging scenarios, it enables accurate visual-inertial navigation while appearance-based feature selection fails to track robot's motion during aggressive maneuvers.Comment: 20 pages, 7 figures, 2 table

    Design, Development and Implementation of Intelligent Algorithms to Increase Autonomy of Quadrotor Unmanned Missions

    Get PDF
    This thesis presents the development and implementation of intelligent algorithms to increase autonomy of unmanned missions for quadrotor type UAVs. A six-degree-of freedom dynamic model of a quadrotor is developed in Matlab/Simulink in order to support the design of control algorithms previous to real-time implementation. A dynamic inversion based control architecture is developed to minimize nonlinearities and improve robustness when the system is driven outside bounds of nominal design. The design and the implementation of the control laws are described. An immunity-based architecture is introduced for monitoring quadrotor health and its capabilities for detecting abnormal conditions are successfully demonstrated through flight testing. A vision-based navigation scheme is developed to enhance the quadrotor autonomy under GPS denied environments. An optical flow sensor and a laser range finder are used within an Extended Kalman Filter for position estimation and its estimation performance is analyzed by comparing against measurements from a GPS module. Flight testing results are presented where the performances are analyzed, showing a substantial increase of controllability and tracking when the developed algorithms are used under dynamically changing environments. Healthy flights, flights with failures, flight with GPS-denied navigation and post-failure recovery are presented

    Rigid Body Attitude Estimation: An Overview and Comparative Study

    Get PDF
    The attitude estimation of rigid body systems has attracted the attention of many researchers over the years. The development of efficient estimation algorithms that can accurately estimate the orientation of a rigid body is a crucial step towards a reliable implementation of control schemes for underwater and flying vehicles. The primary focus of this thesis consists in investigating various attitude estimation techniques and their applications. Two major classes are discussed. The first class consists of the earliest static attitude determination techniques relying solely on a set of body vector measurements of known vectors in the inertial frame. The second class consists of dynamic attitude estimation and filtering techniques, relying on body vector measurements as well other measurements, and using the dynamical equations of the system under consideration. Various attitude estimation algorithms, including the latest nonlinear attitude observers, are presented and discussed, providing a survey that covers the evolution and structural differences of these estimation methods. Simulation results have been carried out for a selected number of such attitude estimators. Their performance in the presence of noisy measurements, as well as their advantages and disadvantages are discussed

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Mención Internacional en el título de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador común. La percepción del entorno se mide mediante sensores que tienen error, los modelos que interpretan la información y/o definen comportamientos son aproximaciones del mundo y por consiguiente también presentan error. Explicar el error permite extender los límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, así como de las nuevas tecnologías que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores información necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control de guiado que reacciona a la información percibida por los sistemas de percepción y navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión por computador. Después se plantean problemas de estimación y filtrado desde la aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una función que minimizar mediante aprendizaje. El último caso del compendio aborda un problema de clasificación de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresión y clasificación, donde se plantea el error como una función de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jesús.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Martínez Cav

    Nonlinear Attitude Estimation Using Intermittent and Multi-Rate Vector Measurements

    Full text link
    This paper considers the problem of nonlinear attitude estimation for a rigid body system using intermittent and multi-rate inertial vector measurements as well as continuous (high-rate) angular velocity measurements. Two types of hybrid attitude observers on Lie group SO(3)SO(3) are proposed. First, we propose a hybrid attitude observer where almost global asymptotic stability is guaranteed using the notion of almost global input-to-state stability on manifolds. Thereafter, this hybrid attitude observer is extended by introducing a switching mechanism to achieve global asymptotic stability. Both simulation and experimental results are presented to illustrate the performance of the proposed hybrid observers.Comment: 22 pages, 7 figures, submitted to IEEE TAC for possible publicatio
    corecore