10,056 research outputs found

    Multitask Evolution with Cartesian Genetic Programming

    Full text link
    We introduce a genetic programming method for solving multiple Boolean circuit synthesis tasks simultaneously. This allows us to solve a set of elementary logic functions twice as easily as with a direct, single-task approach.Comment: 2 page

    A Genetic Programming Approach to Designing Convolutional Neural Network Architectures

    Full text link
    The convolutional neural network (CNN), which is one of the deep learning models, has seen much success in a variety of computer vision tasks. However, designing CNN architectures still requires expert knowledge and a lot of trial and error. In this paper, we attempt to automatically construct CNN architectures for an image classification task based on Cartesian genetic programming (CGP). In our method, we adopt highly functional modules, such as convolutional blocks and tensor concatenation, as the node functions in CGP. The CNN structure and connectivity represented by the CGP encoding method are optimized to maximize the validation accuracy. To evaluate the proposed method, we constructed a CNN architecture for the image classification task with the CIFAR-10 dataset. The experimental result shows that the proposed method can be used to automatically find the competitive CNN architecture compared with state-of-the-art models.Comment: This is the revised version of the GECCO 2017 paper. The code of our method is available at https://github.com/sg-nm/cgp-cn

    Cartesian genetic programming for trading: a preliminary investigation

    Get PDF
    In this paper, a preliminary investigation of Cartesian Genetic Programming (CGP) for algorithmic intraday trading is conducted. CGP is a recent new variant of genetic programming that differs from traditional approaches in a number of ways, including being able to evolve programs with limited size and with multiple outputs. CGP is used to evolve a predictor for intraday price movements, and trading strategies using the evolved predictors are evaluated along three dimensions (return, maximum drawdown and recovery factor) and against four different financial datasets (the Euro/US dollar exchange rate and the Dow Jones Industrial Average during periods from 2006 and 2010). We show that CGP is capable in many instances of evolving programs that, when used as trading strategies, lead to modest positive returns

    Differentiable Genetic Programming

    Full text link
    We introduce the use of high order automatic differentiation, implemented via the algebra of truncated Taylor polynomials, in genetic programming. Using the Cartesian Genetic Programming encoding we obtain a high-order Taylor representation of the program output that is then used to back-propagate errors during learning. The resulting machine learning framework is called differentiable Cartesian Genetic Programming (dCGP). In the context of symbolic regression, dCGP offers a new approach to the long unsolved problem of constant representation in GP expressions. On several problems of increasing complexity we find that dCGP is able to find the exact form of the symbolic expression as well as the constants values. We also demonstrate the use of dCGP to solve a large class of differential equations and to find prime integrals of dynamical systems, presenting, in both cases, results that confirm the efficacy of our approach

    A Grouping Genetic Algorithm for Joint Stratification and Sample Allocation Designs

    Full text link
    Predicting the cheapest sample size for the optimal stratification in multivariate survey design is a problem in cases where the population frame is large. A solution exists that iteratively searches for the minimum sample size necessary to meet accuracy constraints in partitions of atomic strata created by the Cartesian product of auxiliary variables into larger strata. The optimal stratification can be found by testing all possible partitions. However the number of possible partitions grows exponentially with the number of initial strata. There are alternative ways of modelling this problem, one of the most natural is using Genetic Algorithms (GA). These evolutionary algorithms use recombination, mutation and selection to search for optimal solutions. They often converge on optimal or near-optimal solution more quickly than exact methods. We propose a new GA approach to this problem using grouping genetic operators instead of traditional operators. The results show a significant improvement in solution quality for similar computational effort, corresponding to large monetary savings.Comment: 22 page
    corecore