28 research outputs found

    Assessment of vertical treadmill running under different levels of simulated gravity, using a vertical treadmill facility with a subject loading system (Avatar)

    Get PDF
    Introduction: Prolonged exposure to microgravity during spaceflights leads to severe deconditioning in the physical performance of astronauts that affects dangerously crew health and safety during mission critical maneuvers. To understand the effectiveness of the existing inflight daily countermeasures, treadmill running in simulated microgravity under different levels of adjusted g-load is compared to usual treadmill running on earth. Methods: For purposes of exercise planning onboard the ISS, the objective of this study was to assess the oxygen uptake under using spiroergometric assessment of men and women (n=26, 8 female and 6 male 20- 30 years; 6 male and 6 female 50-60 years) during running on an horizontal treadmill and on a vertical treadmill under different levels of simulated gravity with the Vertical Treadmill Facility (VTF) and Subject loading system (SLS) from the European Space Agency (ESA) and took place in the Physiology Laboratory of the institute of Aerospace Medicine at the Department of Space physiology at the German Space Center (DLR) in Cologne, Germany. After assessing the maximum oxygen uptake using the Bruce-protocol on the horizontal treadmill, an incremental running protocol on both the vertical and horizontal treadmill was performed in randomized order, starting at a speed of 4 kph and increasing every 4 min by 2.5 kph to a maximum of 19 kph. The runs on the vertical treadmill are performed under 0.3g, 0.6g and 1 g of body weight. Results: 26 Subjects were included with a total of 93 runs (9 of 102 runs excluded). The maximum speed was greater for 0.3g and for 0.6g on the vertical treadmill (P < 0.001, see Table above) than on the horizontal treadmill. By contrast, peak oxygen uptake was greater for the horizontal treadmill than for all conditions on the vertical treadmill (P < 0.001), and so was maximal heart rate (P < 0.05). Conclusion: The reduction in peak oxygen uptake on the vertical treadmill was strikingly similar across the three simulated gravity conditions and cannot be explained by inability to run faster. Rather, gravity-related impediment of gas exchange, or impediment of perfusion in horizontal position can be suspected. If this should be the case, then this would constitute a substantial limitation to exercise in space

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 312)

    Get PDF
    This bibliography lists 300 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1988

    Aerospace medicine and biology. A continuing bibliography with indexes, supplement 206, May 1980

    Get PDF
    This bibliography lists 169 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    Development of a Portable Seat Cushion for the Estimation of Heart Rate Using Ballistocardiography

    Get PDF
    Cardiovascular diseases are a leading contributor of health problems all over the world and are the second leading cause of death. They are also the cause of significant economic burden, costing billions of dollars in healthcare every year. With an aging population, the strain on the healthcare system, both in terms of costs and care provision, is expected to worsen. Frequent cardiac assessment can provide essential information towards diagnosis, monitoring, and treatment, which can mitigate symptoms and improve health outcomes for people with conditions such as heart failure. This has led to increasing interest in cardiac assessment at home. Additionally, for some populations like people with limited mobility and older adults, long term vitals monitoring at a clinical setting is not feasible, making at-home monitoring more viable and economical. Most devices available for cardiac monitoring at home are wearables. While wearable technology can be accurate, it requires compliance and maintenance, which is not an ideal solution for all populations. For example, people who are not comfortable using wearables or people with a cognitive impairment may not want or be able to use wearables, which could exclude these user types from at home monitoring. Keeping these factors under consideration, the past decade has seen an increased interest in the development of technologies for Ambient Assisted Living (i.e., smart technologies integrated into a user's environment). These technologies have the potential for ongoing health monitoring in an unobtrusive manner. This thesis presents research into the development of a smart seat cushion for heart rate monitoring. The cushion is able to calculate the heart rate of a person seated on it by acquiring their Ballistocardiogram (BCG). BCG is a cardiovascular signal corresponding to the displacement of the body in response to the heart pumping blood at every heartbeat. The prototype seat cushion has load cells embedded inside it that sense the micromovements of the body and translate it to an electrical signal. An analog signal conditioning circuit amplifies and filters this signal to enhance the components corresponding to BCG before it is converted to digital form. A pilot study was conducted with twenty participants to acquire BCG in real-world scenarios: 1) sitting still, 2) reading, 3) using a computer, 4) watching TV, and 5) having a conversation. Heart rate was calculated using a novel algorithm based on Continuous Wavelet Transform by detecting the largest peaks (referred to as the J-peaks) in the BCG. Excluding three outliers, the algorithm is able to achieve an overall accuracy of 94.6% compared to gold standard Electrocardiography (ECG). This accuracy is observed to be as good as or better than those of existing wearable heart rate monitors. The seat cushion developed in this thesis research can serve as a portable solution for cardiac monitoring and can integrate into an ambient health monitoring system, offering continued monitoring of heart rate while requiring no perceived effort to operate it. Future work includes exploring different sensor configurations, machine learning based approaches for improving J-peaks detection, and real-time monitoring of heart rate

    Non-invasive monitoring of cardiac function through Ballistocardiogram: an algorithm integrating short-time Fourier transform and ensemble empirical mode decomposition

    Get PDF
    The Ballistocardiogram (BCG) is a vibration signal that is generated by the displacement of the entire body due to the injection of blood during each heartbeat. It has been extensively utilized to monitor heart rate. The morphological features of the BCG signal serve as effective indicators for the identification of atrial fibrillation and heart failure, holding great significance for BCG signal analysis. The IJK-complex identification allows for the estimation of inter-beat intervals (IBI) and enables a more detailed analysis of BCG amplitude and interval waves. This study presents a novel algorithm for identifying the IJK-complex in BCG signals, which is an improvement over most existing algorithms that only perform IBI estimation. The proposed algorithm employs a short-time Fourier transform and summation across frequencies to initially estimate the occurrence of the J wave using peak finding, followed by Ensemble Empirical Mode Decomposition and a regional search to precisely identify the J wave. The algorithm鈥檚 ability to detect the morphological features of BCG signals and estimate heart rates was validated through experiments conducted on 10 healthy subjects and 2 patients with coronary heart disease. In comparison to commonly used methods, the presented scheme ensures accurate heart rate estimation and exhibits superior capability in detecting BCG morphological features. This advancement holds significant value for future applications involving BCG signals

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 142

    Get PDF
    This bibliography lists 256 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1975 for aerospace medicine and biology

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 361)

    Get PDF
    This bibliography lists 141 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Mar. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Aerospace Medicine and Biology: A continuing Bibliography with Indexes

    Get PDF
    This bibliography lists 205 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1985

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 233, June 1982

    Get PDF
    This bibliograhy lists 387 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1982
    corecore