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The Ballistocardiogram (BCG) is a vibration signal that is generated by the
displacement of the entire body due to the injection of blood during each
heartbeat. It has been extensively utilized to monitor heart rate. The
morphological features of the BCG signal serve as effective indicators for
the identification of atrial fibrillation and heart failure, holding great
significance for BCG signal analysis. The IJK-complex identification allows
for the estimation of inter-beat intervals (IBI) and enables a more detailed
analysis of BCG amplitude and interval waves. This study presents a novel
algorithm for identifying the IJK-complex in BCG signals, which is an
improvement over most existing algorithms that only perform IBI
estimation. The proposed algorithm employs a short-time Fourier transform
and summation across frequencies to initially estimate the occurrence of the J
wave using peak finding, followed by Ensemble Empirical Mode
Decomposition and a regional search to precisely identify the J wave. The
algorithm’s ability to detect the morphological features of BCG signals and
estimate heart rates was validated through experiments conducted on
10 healthy subjects and 2 patients with coronary heart disease. In
comparison to commonly used methods, the presented scheme ensures
accurate heart rate estimation and exhibits superior capability in detecting
BCG morphological features. This advancement holds significant value for
future applications involving BCG signals.
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1 Introduction

Monitoring cardiac activity has been a popular area of research in biomedical practices.
However, current clinical monitoring methods, such as electrocardiography (Camps et al.,
2021) and echocardiography (Ostvik et al., 2021), require specialized equipment and
professional operations. Moreover, the electrodes or probes used can cause physical
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discomfort and psychological stress, particularly with long-term use
(Sredniawa et al., 2020). As demand for non-invasive home health
monitoring grows, BCG has emerged as a promising alternative
capable of effectively assessing cardiovascular and respiratory
activity (Inan et al., 2015). Recent advances in electronics and
sensor technologies have led to a variety of ways to collect BCG
signals. Sensors can be embedded in objects such as bed legs
(Mitsukura et al., 2020; Jung et al., 2021), mattresses (Hwang
et al., 2014), chairs (Rajala et al., 2018), pillows (Sadek et al.,
2017), weight scales (Liu et al., 2022), and even a camera (Li
et al., 2020) to enable monitoring in a non-sensory state. By
eliminating the need for direct contact between the subject and
sensors, these methods minimize physical and psychological
discomfort. For example, sensors integrated into a hospital bed
or home environment enable all-night BCG signal acquisition and
effective heart rate detection, and non-invasive sleep monitoring
(Nurmi et al., 2016).

Ballistocardiogram (BCG), a body vibration caused by heart
beating, was initially discovered by Gordon in 1877. In 1936, Starr
et al. provided evidence that the sensitivity characteristic of BCG can
reflect muscle contraction non-invasively, which indirectly indicates
the state of cardiac activity (Starr et al., 1978). BCG signals record the
synchronous movement of the human body caused by left atrial
blood pumping and indirectly reflect the mechanical action of the
heart. Normal BCG displays consistency in a series of heartbeats and
has repeatability, consisting primarily of H, I, J, K, and M, N waves.
The largest amplitude in BCG signals is composed of H, I, J, and K
waves, which can be illustrated by the letter W in shape.

Apart from heart rate, BCG signals are a valuable source of
information that can effectively reflect cardiac function (Chang
et al., 2021; Shin et al., 2021b). Among the BCG signal
characteristics, the I-J amplitude is closely linked to changes in
cardiovascular parameters. Studies have shown that the I-peak of the
BCG reflects the maximum acceleration of ascending aortic blood,
which can serve as a measurement of the mechanical forces of the
heart (Guidoboni et al., 2019). Moreover, the J-peak of the BCG
provides insight into heart blood ejection. The time interval between
the R wave of the ECG and the BCG I and J waves can be used to
analyze the time between cardiac contraction and aortic ejection.
Positive correlations were observed between I-J amplitude and
cardiac output (CO) as well as stroke volume, and also between
I-J slope and heart rate (HR) (Rooij et al., 2015). Additionally,
significant differences in the I-J interval, J-K interval, and wave
group power between healthy individuals and patients with
coronary heart disease (CHD) have been noted (Etemadi and
Inan, 2018). Heart valve dysfunction impacts cardiac ejection and
reduces the amplitude of I and J waves (Gubner et al., 1953). Several
studies have indicated that the K waves of the BCG are often reduced
or absent in most cases of aortic coarctation (Jiang et al., 2021a).
These morphological features can only be detected by accurately
identifying the IJK-complex. Once the IJK-complex is detected, the
amplitude and interval of other BCG waves can be analyzed in
greater detail.

The advancement of digital signal processing technology has
provided powerful tools for processing BCG signals. Various signal
processing methods have been applied to the processing of BCG
signals. These methods include peak detector (Brink et al., 2006),
template matching (Rooij et al., 2015), auto-correlation function

(1 et al., 2013), cepstrum analysis (Bruser et al., 2015), fast Fourier
transform, wavelet analysis (Paalasmaa et al., 2015), and empirical
mode decomposition (Seok et al., 2021). In recent years, with the
development of artificial intelligence technology, clustering-based
(Paalasmaa et al., 2015) and deep learning methods (Cathelain et al.,
2020; Hersek et al., 2020) have also been applied to analyze BCG
signals. Additionally, multi-channel signal acquisition systems and
multi-channel data fusion algorithms have been developed to
enhance the detection system’s performance (Jung et al., 2021).
Notably, the signal processing of each channel of a multi-channel
system is based on a single-channel algorithm.

Most of the above algorithms were primarily designed to
estimate IBI and heart rate, rather than accurately locating the
position of a specific waveform in the BCG. These methods
convert BCG signals into various correlation or wavelet
coefficient curves, which may sacrifice BCG waveform
information while providing relatively accurate IBI data. Locating
the IJK-complex in the BCG signal without referencing another
signal is a challenging task. This is because the waveform of the BCG
signal shows substantial variability from subject to subject, and even
the same subject shows significant variations at different periods or
in different acquisition positions (Ibrahim, 2018). Generally, the
HIJKL complex with a “W” shape is the most amplified and
reproducible segment of the BCG signals, and the largest
amplitude is typically found in the J wave. However, in certain
cases, the amplitude of the H wave or L wave may surpass that of the
J wave. Due to noise and the variability of the BCG signal waveform,
the IBI estimation algorithm based on J wave detection often
produces larger errors than those based on template matching
and correlation function methods.

To date, a reliable and practical method to accurately locate the
position of IJK waves in the BCG signal without referencing other
signals remains elusive. This study proposes a novel BCG signal
detection method based on the short-time Fourier transform (STFT)
and ensemble empirical mode decomposition (EEMD), with the
goal of identifying the position of the IJK wave in each BCG signal
without relying on ECG and other signals. By relying solely on the
BCG signal, this method can acquire heart rate, HRV, I-J amplitude,
I-J-K interval, and other cardiac functional information. The
performance of the algorithm was evaluated in 12 subjects.

2 Materials and equipment

2.1 Signals acquisition equipment

In the BCG signal acquisition circuit design, an
electromechanical film (EMFi) sensor (Satu and Jukka, 2012) was
used for BCG signal acquisition. The tiny pressure signal generated
by breathing or heartbeat can induce charge changes on the
corresponding surface electrode layer of the sensor. The high
sensitivity and high input impedance characteristics of the EMFi
sensor suitably facilitate the weak physiological signal acquisition.
The BCG signal conditioning circuit comprises a charge amplifier,
low-pass filter, signal separation, and secondary amplifier circuits. A
charge amplification circuit based on OPA4340 (Texas Instruments,
2016) transformed the output signal of the electromechanical film
sensor into a voltage signal. To mitigate high-frequency noise
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interference, a second-order Butterworth low-pass filter with a cut-
off frequency of 30 Hz was employed.

In the supine position, the respiratory signal’s amplitude
exceeds that of the BCG signal. Due to the close frequency
band range of the respiratory (0.2–0.5 Hz) and BCG signals
(1–12 Hz) (Ibrahim, 2018), filtering the respiratory signal
through an analog filter is challenging. Thus, to suppress
respiratory signals’ narrow frequency band and high amplitude
characteristics, a dual T-Notch filter with a 0.3 Hz center frequency
was designed. The dual T-Notch filter exhibits a narrow transition
band, significant attenuation near the central frequency, and
requires no excess resistance-capacitance elements, making it
well-suited for attenuating respiratory signals. Subsequently, a
second amplifier circuit was employed to ensure the signal
attained the ADC’s optimal input dynamic range. This circuit
effectively mitigates breathing interference in BCG signal
acquisition and exhibits robust anti-noise performance.

The ECG signal was not used in BCG signal processing. ECG
acquisition’s purpose was solely to verify the proposed
algorithm’s accuracy. The AD8232 (Analog Devices Inc., 2012)
based signal conditioning block was designed for cardiac
bioelectrical signals. It contains an integrated particular
instrument amplifier, a suitable leg driver amplifier, an
operational amplifier, and a mid-supply reference buffer.
Combining a unique instrument amplifier, AD8232 can
amplify the ECG signal and reject the electrode half-cell
potential. The sampling circuit was designed based on the
STM32F107 (STMicroelectronics, 2017) chip, with the internal
analog-to-digital converter. The BCG and ECG signals are
sampled synchronously in the signal conditioning circuit, with
a sampling precision of 12 bits and a sampling rate of 250 Hz. The
sampled data were transmitted to a host computer through a
serial port. The host computer receives and processes the signals
through the program developed by MATLAB.

2.2 Subjects and experimental procedure

Ten healthy subjects (6 males and 4 females, age: 27.1 ±
3.3 years) and two patients with CHD (male, no cardiac stenting,
age: 53 and 46 years) were recruited for data collection in controlled
laboratory settings. All subjects provided written informed consent
before the experiment. The experiment was approved by the Ethics
committee of the China Astronaut Research and Training Center.

The experiment had two stages: preparation and data collection.
Initially, the subjects were instructed to lie in a bed for 3 minutes
until reaching a steady resting state. Subsequently, the signal
acquisition equipment previously introduced continuously
recorded BCG and ECG signals with the subjects in the supine
position for 10 minutes.

3 Methods

3.1 Signal pre-processing

Although a respiration separation circuit was designed for the BCG
acquisition circuit, a few respiration components and high-frequency

noise persist in the signal. Furthermore, the signal may experience
considerable changes, surpassing the measuring range, owing to actions
such as limb movements or coughing. To eliminate the residual
interference signals, an FIR bandpass digital filter with a cut-off
frequency of 1–20 Hz was employed. Subsequently, the signal was
segmented every 10 seconds.

A digital notch filter with a center frequency of 50 Hz was used
to process the ECG signal and remove the power line interference.
Then, an FIR bandpass digital filter with a cut-off frequency of
1–40 Hz was used to remove the out-of-band noise, and a
segmented function fit was used to remove the baseline drift.
Because of the high quality of the ECG signal in the resting
state, with the above processings, a simple peak detection
method with a threshold was enough to locate the R wave. The
R wave was used as a criterion for determining the heartbeat
interval.

The BCG data was segmented and each segment lasted 10 s. 2 s
were added before and after each segment to prevent the edge from
corrupting. Once the heartbeat localization was completed, the
heartbeat data located within these 2 s were removed.

3.2 IJK-complex detection algorithm

The main objective of the algorithm is to identify the IJK-
complex position in the BCG signal. More specifically, it aims to
locate the exact position of the three wave peaks, which are
comprised of three steps. These steps will be elaborated upon in
detail in the upcoming sections.

3.2.1 Beat-to-beat heart rate estimation and get
initial J wave location

Characteristics of the BCG signal time-domain waveform make
it challenging to detect directly, and it is even difficult to distinguish
each complete BCG waveform. To address this issue, Short-Time
Fourier Transform (STFT) is selected as the primary method to
realize beat-to-beat heart rate estimation and initial localization of J
wave. The fundamental concept of the STFT is to use a time-
frequency localized window function. It is assumed that g (t) is
smooth (pseudo-smooth) in a relatively short time interval. By
sliding g (t) and calculating the product of f (t) and g (t), the
power spectrum of the signal at different moments can be derived
accordingly (Wacker and Witte, 2013). The window function used
in the STFT cannot be changed during the operation, and the
resolution of the STFT is fixed. If the resolution needs
modification, the window function must be re-chosen to achieve
the desired output. This approach can ensure that a uniform
resolution scale is applied to all signals. Due to the influence of
the window function, the STFT exhibits local characteristics, which
is a function of both frequency and time. Explicitly, the STFT is
defined as:

STFTx t,ω( ) � ∫∞

−∞
x τ( )w* τ − t( )e−jωτdτ (1)

ω is the analog angular frequency variable, w(t) is the time
window function of time-frequency localization. The commonly
used time window functions include rectangular, Gaussian,
Hanning, Hamming, etc.
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The time scale of the time-frequency map generated by STFT is
fixed, different from continuous wavelet transform (CWT). When
the selected window is narrow, STFT has a higher time resolution,
and STFT has a higher frequency resolution when the w(t) is set
wide. The characteristic of CWT is that the high-frequency part
has better time resolution, while the low-frequency part has better
frequency resolution. To ensure the robustness of detection, the
resolution of the low-frequency region is deliberately reduced,
which is the main reason for choosing the STFT method instead
of CWT.

S t( ) � ∑trf :,7( )
trf :,4.5( )trf i( ) (2)

trf(i) is the coefficient matrix obtained by STFT. Curve S(t) is
obtained by summing the frequency band coefficients of the J
wave in the STFT coefficient matrix. S(t) reflects the occurrence
time of the primary energy of the BCG signal, and the peak point of
the curve has a good correspondence with the position of the J wave
of the BCG signal in time. Therefore, we use the time-frequency
function obtained by the superposition of the main frequency band
coefficients of the BCG signal to determine beat-to-beat heart rate
and use it as the reference for locating each peak. The relationship
between the time-frequency diagram, curve S(t) and BCG signal J
wave is shown in Figure 1.

The most critical parameter that needs to be determined is the
length of the window function for STFT, which determines the
frequency domain resolution. When the frequency domain
resolution is higher, the coefficient fitting curve peak
corresponding to the J wave is better. However, the
corresponding spurious waves and other peaks of the BCG signal
will become more prominent. Decreasing the frequency domain

resolution can make the curve smoother, improve the accuracy of
heartbeat event detection, and increase the algorithm’s robustness.
However, the temporal correspondence between the peak of the
curve and the J wave of the BCGwill become correspondingly worse.
Figure 2 shows the coefficient fittings obtained by applying three
lengths of Hanning windows.

A resolution adaptive determination algorithm was designed to
determine the appropriate STFT window length parameters for
different individuals. First, calculate S(t) with an STFT window
length of w(t) � 0.3s, and identify all peaks of S(t). The reason why
0.3 s is chosen as the starting length is that even if severe heart rate
abnormalities occur, the maximum heart rate will not exceed
200 beats per minute in a lying down resting state, with a
minimum heart rate interval of 0.3 s. Then, in steps of 0.1 s,
gradually increase the STFT window length until any peak value
of S(t) is more than 3 times larger than the other peaks in the w(t)
window centered at the peak point position, and determine that the
w(t) value is the window function length.

Increasing w(t), reducing the frequency domain resolution, and
obtaining a more prominent S(t) peak is to improve the robustness
of heartbeat detection, which brings a loss in the temporal
correspondence between the peak points of the curve and the J
wave. With subsequent algorithms, it can be compensated to a
certain extent.

3.2.2 J wave extraction with EEMD
Empirical mode decomposition (EMD) is an adaptive signal

decomposition algorithm for non-linear and non-stationary signals.
(Huang et al., 1998). EMD decomposes the signal based on the time
scale characteristics of the data itself, without any basis function. It is
essentially different from wavelet transform, Fourier transform, and

FIGURE 1
From top to bottom are the time-frequency diagram obtained by STFT, the time-frequency diagram of the most critical frequency band of BCG
intercepted by us, the coefficient curve obtained by summing the time-frequencymatrix of the central frequency band along the Y-axis, the original BCG
signal and the corresponding relationship between the peak point of the curve and the J wave.
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other methods. The essence of EMD is to obtain the eigen wave
mode through the time scale characteristic of the signal, which
decomposes the signal into multiple intrinsic mode functions (IMF).
Therefore, EMD can be applied to different kinds of signal
decomposition without any limitations, and it has distinct
advantages in non-linear and non-stationary signal processing.
Despite many advantages, the algorithm has inevitable defects,
such as edge effect and mode mixing problem. In particular,
mode aliasing can cause the signal of one scale signal to be

aliased in different IMF and even cause one IMF to lose physical
significance. Modal aliasing is defined as a signal with different scales
in a single IMF signal or a signal with similar scales residing in
different IMF components (Djordjevich, 1981). The results of BCG
decomposed by EMD are shown in Figure 3 (the last line in Figure 3
is IMF obtained by the EMD algorithm).

Ensemble empirical mode decomposition (EEMD) is an
algorithm that has been developed to address the issue of mode
mixing in signal decomposition. One of the key advantages of

FIGURE 2
Time-frequency diagram and coefficient curve under three different frequency resolutions. (A) STFT using a 0.25 s Hanning window. (B) STFT using
a 0.5 s Hanning window. (C) STFT using a 1 s length Hanning window.

FIGURE 3
Comparison diagram of three segments of BCG signals collected from different subjects and processed by EEMD algorithm and EMD algorithm. The
blue waveform in the first line is the raw BCG signal; The red waveform in the second line is the result of the EEMD algorithm, and the purple waveform in
the third line is the result of the EMD algorithm.
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EEMD is that it introduces Gaussian white noise into the signal,
thereby changing the statistical characteristics of the signal
extremum points. This change in the distribution of extremum
points helps to stabilize the decomposition performance of EEMD
when applied to BCG signals. As a result, it becomes possible to
obtain the upper and lower envelopes of the BCG signal that
conform to its characteristic features. Moreover, multiple
averaging techniques can be utilized to remove the added white
noise and enhance the accuracy of signal decomposition using
EEMD (Wu and Huang, 2011).

The EEMD algorithm incorporates two critical parameters.
The first of these is the ratio between the amplitude of the white
noise signal and the standard deviation of the BCG signal,
denoted as Nstd. The effect of different values of Nstd on the
uniformity of the distribution of extremum points varies. The
second important parameter is the number of iterations of the
procedure, denoted as NE. The relationship between Nstd and
NE is established by Eq. 3. Generally, when the decomposition
error, e ≤ 0.01, residual noise is regarded as being small enough
(Wu and Huang, 2011).

e � Nstd���
NE

√ (3)

The Nstd is typically established based on the particular signal
situation and experience, typically ranging between 1% and 5% (Wu
and Huang, 2011). While some researchers have created
corresponding adaptive algorithms to determine Nstd (Xu et al.,
2022), such methods do not have a significant impact on BCG signal
processing enhancement. Given that the noise source and frequency
band of BCG signals tend to remain constant, setting Nstd to 3% can
effectively enhance the distribution of extreme value points in EMD
decomposition (Ni et al., 2017).

However, there is no way to identify J wave and IJK-complexes
by EEMD alone accurately. The diversity of BCG signals among
individuals is the biggest challenge in identifying J wave accurately.
In some decomposed BCG signals, the amplitude of H and L waves
reached or even exceeded the J wave amplitude (Figure 3). This is not
a problem of the algorithm itself, because it happens in some
subjects’ original signals. Nevertheless, 1 or 2 prominent peak
points from the decomposed IMF can be easily located, and the J
wave is among them. For this problem, the threshold value of the
adaptive peak detection algorithm is set low. The purpose of this
setup is to reduce the missed detection rate at the cost of increasing
the false detection rate.

This step used half of the median of each signal segment’s eight
maximum peak points after normalization as the peak detection
threshold, without any other parameters qualification, such as
peak distance. Such a low threshold setting can ensure effective
detection.

Val, LOCSIMF N[ ]{ }
� FindPeaks BCGIMF , ′MinPeakHeight′,Threshold( ) (4)

3.2.3 IJK-complex detection algorithm
The underlying concept of the detection algorithm is to identify

the nearest IMF peak point to the left and right of each peak point of
S(t). Subsequently, one of these two IMF peak points is determined

as the ultimate J wave position based on the temporal relationship
and position consistency. The S(t) curve is computed by summing
the short-time Fourier transform coefficients of the most dominant
frequency band of the BCG signal, which primarily concentrates on
the J wave. Therefore, in most instances, the peak points of S(t)
occur proximate to the J wave. The peak point of S(t) is a crucial
reference for localizing J waves.

There is a critical issue to be addressed here, to strengthen the
robustness of the beat-by-beat heart rate detection algorithm, we use
a wider STFT window function, at the cost of diminished accuracy in
J wave position. In some cases, the peak point of the J wave exhibits
significant deviations from the correct position. This problem
commonly arises from the high amplitude of the H wave or L
wave of the BCG signal in certain individuals, causing the peak point
of the J wave to shift toward the H wave or L wave. While extracting
the prominent peaks in the IMF signal by EEMD, the detection
threshold was relaxed to maximize the coverage of all J waves. The
resultant set of peak points included several other wave peaks that
required careful determination to identify the true J wave.

Previously, when extracting the major peaks in the BCG signal,
the detection threshold is relaxed to maximize the coverage of all J
wave. The resulting set of peak points contained many other wave
peaks, in which the real J wave should be carefully determined.
However, the accuracy of J wave localization is sacrificed to ensure
coverage when detecting heartbeats. In some cases, the J wave’s peak
point deviates significantly from the J wave. The main reason comes
from the high amplitude of the H wave or L wave of the partial BCG
signal in some individuals, which makes the peak point of the J wave
shift toward the H wave or L wave.

The BCG signal exhibits a strong waveform consistency over a
certain period of time, which confers the advantage that the overall
trend of the S(t) peak point shifting toward the H wave or L wave
remains consistent. Specifically, the S(t) peak point consistently
exhibits a stable trend of peak point shifting toward the H or L wave
over time (as demonstrated in Figure 4). Based on this principle, the
J wave localization algorithm is presented below.

The underlying concept of the detection algorithm is to identify
the nearest IMF peak point to the left and right of the peak point of
S(t). The final J wave location is determined by assessing the
temporal relationship and location consistency of these two
points. The algorithm for identifying J waves is specified below.

The J wave identification algorithm is specified as follows
(Table 1).

1) Preliminarily locating the J wave position. The peak detection
algorithm with a time threshold is used in S(t), and the
minimum interval is set to 0.3 s to obtain the heartbeat
sequence LOCSSTFT [N].

Val, LOCSSTFT N[ ]{ } � FindPeaks S t( ), ′MinPeakDistance, 0.3s( )
(5)

2) For each point LOCSSTFT [i] in the sequence of LOCSSTFT [N],
finding 1 point in LOCSIMF [N] that is closest to LOCSSTFT [i] on
the left and right, which is noted as LOCSIMF [k] and LOCSIMF

[k + 1].
3) If one of LOCSIMF [k] and LOCSIMF [k + 1] fell within the range

of LOCSSTFT [i]±40 ms, the point is judged as the J wave position.
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Since the average width of the IJK-complex is about 160 ms. The
closest point will be selected if both points fell within the ±40 ms
range, but this situation rarely happened (occurred a total of
12 times, 0.13% of total heart beats).

4) If both LOCSIMF [k] and LOCSIMF [k + 1] are not within
LOCSSTFT [i]±40 ms, it indicates that the H or L wave makes
LOCSSTFT [i] a significant shift in position to the J wave. In this
case, it would fall between the J wave and the H wave (or L wave).
The relationship between LOCSSTFT [(i-10): (i-1)] (the 9 points
before LOCSSTFT [i]) and the corresponding J wave need to be
analyzed and the number of points that fall to the left and right of
the corresponding J wave is counted. If more J waves are located
to the left of LOCSSTFT [i] in these 9 points, then LOCSIMF [k] is
determined as J wave, otherwise, LOCSIMF [k + 1] is determined
as J wave. This is based on the principle that the tendency to shift
to the H or L wave is consistent over time when the BCG signal is
consistent.

In addition, the distance between LOCSIMF [k] and LOCSSTFT
[i] is also set as a correction condition. When the selected point
with the same deviation from the trend is more than twice the
distance of the other point, the closest point will be chosen. In
this case, the initial estimated position of the J wave has been
exceeded by the more distant points by at least half the average
IJK-complex wave width, or even more. This deviation from our
assumptions regarding the predicted position of the J wave in the
normal morphology of the BCG waveform has led us to accept
values that are closer, with the aim of excluding any potential
interference caused by outliers.

5) I wave and Kwave is detected through J wave coordinates in IMF.
I wave is the first minimum point before J wave in the IMF signal,
and K wave was the first minimum point after J wave in the IMF
signal. I wave and K wave also needed to meet corresponding
threshold conditions, and there needed to be a zero-crossing
point between I wave and J wave, and J wave and K wave.

6) It is noteworthy that while the IJK peak point’s position in the
IMF exhibits good correspondence with the original signal, it
demonstrates a slight deviation. Therefore, it is necessary to
correct the peak detected in the IMF as well as the peak point in
the original signal. The method to do so is by defining a ±3 ms
time window for the IJK position located in the IMF and
searching for the corresponding peak in the original signal
within the window.

7) The outlier points are interpolated and replaced. The feature
points within 2 s before and after the segment are removed, data
is recorded, and the next segment of data calculation is started
until the end.

3.3 Performance evaluation

The primary objective of this study is to accurately identify the
IJK-complex of the BCG signal without relying on auxiliary signals
such as ECG, and to further acquire the morphological
characteristics and heart rate parameters of the BCG signal. To
assess the algorithm’s effectiveness, a comprehensive evaluation is
conducted by comparing its BCG morphological feature
extraction, J wave identification, and HRV indices based on the

FIGURE 4
Corresponding relationship between STFT curve and J wave position. (A) The peaks of the curve fell near J wave. (B) Due to the influence of the L
wave, the peaks of the curve uniformly shifted to the L wave.
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identified J waves with the most commonly used and accurate
existing methods.

Given that the error between the two methods can be either
positive or negative, the mean absolute error (MAE) is utilized to
measure the error of the two algorithms (Ibrahim and Bessam,
2021). The MAE is defined as follows:

MAE � 1
n
∑n

i�1 yi − xi
∣∣∣∣ ∣∣∣∣ (6)

MAE %( ) � MAE
ymean

(7)

3.3.1 BCG morphological feature detection
ECG-based beat gating and wave localization have emerged as

the prevailing methods in prior studies for the identification of BCG
waveform features (Ashouri et al., 2016; Kim et al., 2018; Shin et al.,
2021a; Zhang et al., 2021). In this method, the ECG signal is initially
analyzed to identify the R wave, which serves as the basis for
segmenting the BCG signal into individual heartbeats. These
extracted heartbeats are then averaged, and the J wave is
determined as the global maximum after geometric averaging.
Subsequently, the relative position between the R wave and the J
wave is used to detect the J wave. A similar detection method is
employed for the I-wave and K wave.

Two representative BCG morphological features, namely,
the I-J amplitude and the I-K interval, have been selected for
analysis (Figure 5). The I-J amplitude reflects the peak
amplitude of the IJK-complex, while the I-K interval
represents the width of the IJK-complex. These two
indicators have been proven to be correlated with cardiac

TABLE 1 IJK-complex detection algorithm.

Algorithm IJK-complex detection

Input: LOCS IMF [N]; LOCS STFT [N]

Output: LOCSJ [N]

for i in LOCS STFT [N]

find LOCSIMF [k] and LOCSIMF [k+1] in LOCSIMF [N]

LOCSIMF [k] = max{LOCSIMF [N] < LOCS STFT [i]}

LOCSIMF [k + 1] = min{LOCSIMF [N] > LOCS STFT [i]}

Switch

case 1 | LOCSIMF [k]—LOCS STFT [i] | < 40 ms or | LOCSIMF [k] - LOCS STFT [i] | < 40 ms

J wave = LOCSIMF [k or k + 1]—LOCS STFT [i] < 40 ms

case 2 | LOCSIMF [k & k+1]—LOCS STFT [i] | > 40 ms

If median{LOCSIMF [k-10:k − 1]—LOCS STFT [i − 10:k − 1]} < 0

J wave = LOCSIMF [k]

else median{LOCSIMF [k − 10:k − 1]—LOCS STFT [i − 10:k − 1]} > 0

J wave = LOCSIMF [k + 1]

(Consistent with the previous 9 point offsets)

end if

case 3 | LOCSIMF [k & k + 1] - LOCS STFT [i] | < 40 ms (Hard to happen)

J wave = LOCSIMF [k or k + 1] near to LOCS STFT [i]

end switch

end for

FIGURE 5
Schematic diagram of BCG and ECG signal features.
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ejection function and can be utilized as effective machine
learning features for automatic identification of AF (Wen
et al., 2020). The two features are computed using both the
ECG-assisted algorithm and the algorithm proposed in this
study. MAE is used to evaluate the error between the results.

3.3.2 J wave identification
At present, there is no universally accepted method available

for the accurate detection of J waves in BCG signals.
Furthermore, the absence of a universally accepted gold
standard makes the direct quantification and assessment of J
wave detection unconvincing. Consequently, we propose a
comparison between the beat-to-beat heart rate estimated
from J-J intervals and the R-R intervals. This approach not
only reflects the accuracy of J wave recognition but also
enables performance comparison with numerous existing
studies that utilize BCG signal-derived IBI analysis. To
facilitate comparison with prior research, the evaluation of
heart rate estimation errors also incorporates the root mean
square error (RMSE). The RMSE is defined as follows:

RMSE �
�����������∑n

i�1 yi − xi( )2
n

√
(8)

In addition, the mean deviation and the standard deviation of
the difference between the two data sets are computed. If the
difference obeys a normal distribution, 95% of the deviation
values will lie within the mean ±1.96SD limits. Finally, Bland-
Altman plots for each subject’s data are drew to assess whether
there is a systematic bias in the results obtained by the two
algorithms (Bland and Altman, 2010).

3.3.3 HRV estimation
Heart rate variability (HRV) refers to the minor differences in

instantaneous heart rate between consecutive heartbeats or the
pattern of change in the beat-to-beat interval (Tiwari et al., 2021).
HRV is an important method for the analysis of cardiac activity.
The features extracted by time and frequency domain methods
are well defined and easily understood. It is commonly used in
clinical cardiovascular disease diagnosis and monitoring. In this
paper, eight most commonly used time and frequency domain
HRV indicators are selected. They are calculated using the R-R
sequence of ECG and the J-J sequence of BCG signal extracted by
presented algorithm. N in the following equation represents the
number of all samples, and RRi (JJi) represents the time
difference between adjacent R waves (J waves).

Heart rate interval mean, RRMean (JJMean):

RRMean � 1
n
∑n

i�1RRi (9)

R-R (J-J) interval standard deviation, SDNN:

SDNN �
�������������������∑n

i�1 RRi − RRMean( )2
n

√
(10)

PNN50 indicates the number of times that the RR (JJ) interval
difference is greater than 50 ms.

RR (JJ) interval difference root mean square, MSSD:

MSSD �
����������������∑n−1

i�1 RRi+1 − RRi( )2
n − 1

√
(11)

The coefficient of variation (CV) is defined as the ratio of the
standard deviation to the mean of the RR (JJ) interval:

CV � SDNN
RRMean

(12)

The frequency-domain analysis method needs a selection of a
signal segment (usually greater than 256 heartbeat points) for
spectral analysis. Studies divided the HRV spectrum into three
frequency bands, very low frequency (VLF, <0.04 Hz), low
frequency (LF, 0.04–0.15 Hz), and high frequency (HF,
0.15–0.4 Hz). In this study, low-frequency power (LF), high
frequency (HF), and total power (TP) are chosen.

Paired samples t-test were used to assess the statistically
significant differences between the indicators of the eight HRV
characteristics obtained by BCG and ECG. Furthermore, the
consistency of the results obtained by the two algorithms was
assessed by Bland-Altman plots.

4 Results

4.1 BCG morphological feature detection

Table 2 shows the I-K interval and I-J amplitude outcomes
obtained using the algorithm presented in this study and the ECG-
based IJK-complex localization algorithm. The algorithm exhibited
a notable performance in the estimation of the I-K interval, with an
average MAE of 1.48 ms. The minimum MAE was only 0.2 ms and
the maximum was 6.27 ms. The MAE of two patients with CHD
were 0.2 ms and 2.15 ms, maintaining the same level of error as
other healthy subjects.

Regarding the I-J amplitude, we observed a MAE of 0.05 V.
Moreover, the MAE indicated no significant performance
differences between the two CHD patients and healthy subjects.
Figure 6 illustrates the I-J amplitude data obtained from both
methods. Overall, a strong consistency can be observed between
the two methods, despite the presence of significant deviations at
individual points.

4.2 J wave identification (heart rate
estimation)

Based on the detection and assessment methods presents
above, Beat-to-beat heart rate estimation was performed on
12 subjects, and the results are summarized in Table 3;
Figure 7. The average heart rate estimated from the R-R
interval of ECG was 68.23 bpm and 68.08 bpm from the J-J
interval of BCG. The maximum deviation in mean heart rate
for all subjects was 0.15 bpm. The MAE of heart rate for all
subjects was 0.99 bpm with a 2.80 bpm 95% confidence interval.
The maximum MAE was 1.83 bpm and the minimum was
0.33 bpm. The RMSE, which is more sensitive to significant
errors due to its higher norm, was 2.04 bpm, with the
maximum value being 3.44 bpm, and the minimum value was
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0.75 bpm. The Bland-Altman plot, a suitable approach for
comparing two medical measurement methods, showed that the
variation in the Beat-to-Beat heart rate among the 12 subjects
ranged from −0.08 to 0.6 bpm, and the 95% confidence interval
(±1.96 SD) ranged from ±1.47 to ±6.74 bpm. The Bland-Altman

plots of subject NO. 1 and subject NO. 12 are shown in Figure 8. It
is worth noting that subjects No. 11 and No. 12 in the table are
patients with CHD, and the MAE of heart rate estimations is
1.17 bpm and 0.47 bpm. The algorithm did not show significant
performance degradation on them.

TABLE 2 I-K interval and I-J amplitude estimated accuracy.

Subject I-K interval (M (SD), ms) MAE (ms) MAE (%) I-J amplitude (M (SD), V) MAE (V) MAE (%)

1 171.63 (4.45) 1.41 0.82 2.96 (0.68) 0.05 1.75

2 192.00 (9.81) 6.27 3.27 3.74 (0.77) 0.04 1.07

3 139.08 (8.15) 2.57 1.85 5.43 (0.46) 0.01 0.19

4 150.48 (4.11) 0.81 0.54 4.08 (0.72) 0.05 1.26

5 152.24 (3.58) 0.23 0.15 4.56 (0.49) 0.01 0.27

6 170.03 (4.70) 0.90 0.53 4.87 (1.44) 0.20 4.11

7 191.30 (2.13) 0.59 0.31 3.19 (0.39) 0.06 1.92

8 183.72 (2.83) 0.59 0.32 3.98 (0.65) 0.03 0.85

9 159.92 (3.48) 0.32 0.20 4.50 (0.54) 0.01 0.27

10 163.78 (5.61) 1.73 1.06 4.23 (1.00) 0.06 1.39

*11 175.31 (5.79) 2.15 1.22 3.17 (0.77) 0.12 3.79

*12 166.24 (3.36) 0.20 0.12 4.75 (1.06) 0.01 0.21

mean 167.98 (4.83) 1.48 0.87 4.12 (0.75) 0.05 1.42

*Patients with CHD.

FIGURE 6
The comparison between the I-J amplitude data obtained utilizing two methods. (A) I-J amplitude obtained utilizing ECG-based algorithm. (B) I-J
amplitude obtained utilizing the presented algorithm.
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4.3 HRV estimation

The HRV characteristics were computed from the R-R
interval of the ECG and the J-J interval of the BCG sequence.
The Bland-Altman plots (Figure 9) for the eight indicators
obtained from both measuring methods demonstrated that the
error values between the two methods were within the
Mean ±1.96 SD range. In order to assess whether the HRV
characteristics acquired from the two measurement
approaches were significantly different, a paired-sample t-test
was conducted on each of the eight HRV characteristics for each
participant, and the p-values were computed. The results are
displayed in Table 4. There was no significant difference (p >
0.05) in any of the HRV characteristics acquired by the two
methods.

5 Discussion

The present study aimed to propose an algorithm for the
identification of the IJK-complex in BCG signals. The main
feature of the algorithm is its capability to detect the specific
locations of the IJK-complex in BCG signals, thereby offering
more valuable information for the research and application of
BCG. This significant distinction sets it apart from traditional
methods that primarily focus on the estimation of IBI.

Firstly, the detection of the IJK-complex enables the acquisition of
diverse features pertaining to the amplitude, width, and waveform
morphology of the peaks in the BCG signal. The morphological
features of the BCG signal hold significant value in assessing
cardiac ejection, CO, detecting atrial fibrillation (Brueser et al.,
2013b; Jiang et al., 2021b), and monitoring heart failure patients
(Zhang et al., 2021).

I-J amplitude is a parameter highly associated with CO. It has
been demonstrated in studies that while there is substantial variation
in the shape and amplitude of the BCG waveform among individuals,
the variability within the same individual is comparatively low
(Etemadi and Inan, 2018). Hence, the relative changes in CO can
be robustly derived from the temporal measurements of the
morphological features of BCG signal within an individual. The I-J
amplitude measured by the proposed algorithm exhibits a
comparatively small error (MAE of 1.42%) in comparison to the
ECG-based method. As illustrated in Figure 6, the primary source of
error between the proposed method and the ECG-based method is
not systematic bias, but rather outlier values resulting from the
inaccurate detection of individual points. These outlier values can
be readily interpolated and replaced using algorithms without
compromising the overall utilization of the features.

TABLE 3 Accuracy of heart rate estimation [MAE (bpm), RMSE (bpm)].

Subject HR (M (SD)) MAE MAE (%) RMSE Coverage (%)

1 72.94 (4.72) 0.59 0.81 1.85 95.88

2 81.18 (4.79) 1.49 1.84 3.00 97.44

3 59.73 (2.71) 0.65 1.09 1.53 95.56

4 59.16 (2.23) 0.33 0.56 0.88 95.44

5 62.49 (4.18) 1.83 2.93 3.12 89.89

6 63.39 (4.01) 1.12 1.77 2.56 95.85

7 68.81 (2.59) 0.66 0.96 1.42 89.09

8 63.80 (2.88) 0.84 1.32 1.53 95.66

9 74.60 (6.91) 1.10 1.47 3.44 92.97

10 65.30 (4.34) 1.60 2.45 2.71 91.40

*11 85.55 (2.06) 1.17 1.37 1.70 91.79

*12 59.97 (2.06) 0.47 0.78 0.75 93.34

Mean 68.08 (3.62) 0.99 1.45 2.04 93.69

*Patients with CHD.

FIGURE 7
MAE and RMSE of heart rate estimated from the presented
algorithm and the heart rate measured from ECG. Subjects No. 11 and
No. 12 were patients with CHD.
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The morphological features of the BCG signal are closely
associated with the activity of the cardiovascular system and
arterial pressure, as dictated by the generation mechanism of
BCG (Guidoboni et al., 2019). A wider range of possibilities for
establishing BCG morphological features and clinical alterations is

offered by machine learning methods. Atrial fibrillation, the most
prevalent cardiac arrhythmia, often gives rise to various heart
conditions like stroke and heart failure. machine learning models
can enable atrial fibrillation detection (Wen et al., 2020) by utilizing
morphological features such as the amplitude and interval of the
BCG signal, as well as the skewness and kurtosis of the IJK-complex.

Secondly, the detection of the IJK-complex allows us to obtain
the specific location of the J wave rather than just the IBI. An
important application scenario for identifying the specific location
of the J wave involves the measurement of pulse transit time (PPT).
In a recent study, the utilization of BCG signals, instead of ECG
signals, was employed to determine PPT for the detection of cuffless
blood pressure tracking (Shin et al., 2021b). This approach liberates
blood pressure monitoring from the constraints of ECG electrodes,
thereby facilitating a more comfortable and convenient method for
tracking and monitoring blood pressure. Such monitoring can be
effortlessly achieved through the utilization of portable devices such
as bracelets and mattresses.

Thirdly, the IBI and heart rate can be easily obtained through the
identification of the IJK-complex. Due to the absence of a recognized
gold standard for J wave detection in BCG signals, the primary
objective of our IBI study was to substantiate the validity of J wave
detection. Jung et al. used the Probability Density Function and

FIGURE 8
Bland-Altman plots for the heart rate estimation of two subjects. (A) Bland-Altman plots for subject No. 1 (healthy subject). (B)Bland-Altman plots for
subject No. 12 (patients with CHD).

FIGURE 9
Bland-Altmann plots for eight HRV indicators estimated from the
presented algorithm and the heart rate measured from ECG. Indexes
were marked with different colors.

TABLE 4 HRV indicators statistics results.

HRV ECG (M±SD) BCG (M±SD) Mean absolute error t value p-value

mean 0.878 ± 0.105 0.878 ± 0.104 0.000280 −2.014 0.069

SDNN 0.048 ± 0.020 0.048 ± 0.018 0.000440 −0.429 0.676

PNN50 0.058 ± 0.068 0.056 ± 0.061 0.001464 0.262 0.798

MSSD 0.034 ± 0.019 0.037 ± 0.015 0.002154 −0.962 0.357

CV 0.054 ± 0.024 0.055 ± 0.022 0.000644 −0.491 0.633

LF 0.060 ± 0.065 0.057 ± 0.049 0.002641 0.415 0.686

HF 0.001 ± 0.000 0.001 ± 0.000 0.000013 0.411 0.689

TP 0.061 ± 0.066 0.058 ± 0.049 0.002654 0.416 0.685
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fused multi-channel data to achieve a MAE of 1.78 bpm in the
supine position, based on the data collected from eleven healthy
subjects (Jung et al., 2021). Jiao et al. reported a remarkable
performance of the LSTM network with the lowest MAE of 0.68
(Jiao et al., 2021). However, it should be noted that Jiao’s MAE of
heart rate was computed and averaged every 15 s on the test data.
Another study employed the commonly used CWT method to
process BCG signals and obtained a mean error of −0.03 bpm
(not MAE) and a 95% confidence interval of ±2.7 bpm for heart
rate estimation, based on the results obtained from seven healthy
subjects (Alvarado-Serrano et al., 2016). The proposed algorithm
exhibits a heart rate estimation capability comparable to the
aforementioned methods, with an MAE of 0.99 bpm and a 95%
confidence interval of ±2.8 bpm. By comparing our algorithm to
previous studies that estimated heart rate based on IBI, we found
that the error in heart rate obtained through J wave detection is
comparable. This observation confirms the accuracy of our
algorithm in detecting the position of the IJK-complex.

Furthermore, a noteworthy capability in estimating HRV is
exhibited by our algorithm, thereby enhancing the feature system
for non-invasive cardiac function monitoring. The HRV indices
obtained from BCG and ECG are inherently biased due to the
variability of individual R-J intervals. One of the key factors is
associated with cardiac ejection and systolic blood pressure (Deliere
et al., 2013). A study conducted on 92 healthy subjects showed that
R-J intervals measured by a weighing scale system ranged from 203-
290 ms (Inan, 2009). Another study revealed that the R-J interval
had a standard deviation of 20 ms (Etemadi et al., 2011). However,
our study showed that there was no statistically significant difference
in HRV obtained by BCG and ECG. Among the eight HRV features,
the temporal domain features exhibited better consistency than the
frequency domain features, with the exception of PNN50. This
outcome is consistent with our initial expectations.
PNN50 registers the number of instances when the RR (JJ)
interval difference is greater than 50 ms, which is more
susceptible to the influence of inherent R-J intervals and false
detection points, as well as frequency-domain characteristics.
HRV analysis based on BCG signaling has potential applications
in portable sleep testing and heart disease detection.

Coverage, as a crucial metric for BCG signal analysis, is of
paramount importance. It is undesirable to exclude a significant
portion of the data in order to minimize error. In our study, the
coverage ranged from 89.09% to 97.44%. The majority of the
uncovered data can be attributed to motion artifacts, which
resulted in distorted data. Currently, there is no existing method
to accurately detect heart rate from such corrupted signals. In future
endeavors, we anticipate further enhancements to improve the
algorithm’s coverage. One potential approach to achieve this goal
is through the utilization of a multi-channel fusion algorithm, as
proposed by Jung et al (Jung et al., 2021).

Finally, a brief comparison is made between our proposed
method and the main existing BCG processing methods.
Methods such as template matching, autocorrelation function,
cepstrum analysis, fast Fourier transform, and continuous wavelet
transform (CWT) have been used to estimate IBI rather than
locating the J wave (Ibrahim and Bessam, 2021). For instance,
the template matching algorithm identifies the position of the
heartbeat on the correlation coefficient map of the original signal

and template (Paalasmaa et al., 2015). Similarly, the autocorrelation
function method searches for IBI on the adaptive window
autocorrelation function. The CWT method, which is a time-
frequency transform that extends the short-time Fourier
transform, is widely used in time-frequency analysis. This
method involves estimating the correlation between the signal
and different scales of wavelets, and plotting the variation in
correlation for each wavelet over a specific period. These
aforementioned methods all share the limitation of obscuring the
morphological information of the BCG waveform in order to
estimate IBI. Both the correlation coefficient map and the wavelet
coefficient curve fail to incorporate the morphological information
of the BCG waveform. Moreover, the extremal points on the
coefficient curve do not correspond to specific locations within
the BCG waveform. Another method commonly used for estimating
heart rate involves employing DWT and EMD algorithms to
generate a wavelet coefficient curve or IMF (Ibrahim and
Bessam, 2021). DWT and EMD-based algorithms can also be
utilized to remove out-of-band noise from signals and facilitate
the detection of the J wave. In the DWT approach, the BCG signal
undergoes multiresolution analysis by summing several detailed
components to reconstruct the cardiac signal. The EMD
algorithm necessitates the summation of several IMFs for cardiac
signal reconstruction. Despite both methods exhibiting better noise
removal capability, a time-domain peak detection algorithmmust be
implemented to detect J peaks. However, the robustness of J-peak
detection cannot be effectively guaranteed due to the absence of
other reference standards.

The algorithm introduced in this work is capable of determining
the precise position of the J wave rather than just the IBI, preserving
the IJK position feature of the original signal. The algorithm uses a
short-time Fourier transform and summation across frequencies to
obtain an initial estimate of the J point occurrence using peak finding,
followed by EEMD and a regional search to precisely identify the J
point. Given that the resolution of the frequency domain can be
adjusted as needed with the use of STFT, its role in producing reliable
results cannot be understated. In our study, we have moderately
reduced the frequency band resolution to better match the peaks and J
waves, which can help lower the likelihood of missed or false
detections and improve the overall robustness of the algorithm.
Nevertheless, this reduction of resolution can increase the
deviation between the frequency curve peak and the J wave
position. To address this issue, we have applied the EEMD
algorithm to correct these deviations. The presence of noise in the
frequency band of the BCG signal is the primary factor that affects the
quality of the signal. Furthermore, these noises are challenging to
eliminate through filters. Notably, these noises overlap with the
frequency band of the BCG signal but do not possess repeated
waveforms. To address this challenge, the EEMD algorithm is
utilized, which relies on the intrinsic modal properties of the
signal. This algorithm can effectively segregate the noise and the
BCG signal into different IMFs. The IMF containing the BCG signal
retains the original positional features of the IJK-complex. Based on
an analysis of the reasons why the peak deviates in STFT, we propose a
hypothesis that the deviation direction of the prominent peak is
consistent. We have conducted statistical analysis on 12 human
subjects and observed that the deviation trend for 98.87% of the
points with deviations longer than 40 ms is consistent. This
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observation suggests that the hypothesis is valid, particularly in
relatively short time ranges. By utilizing this approach, we can
combine the benefits of both algorithms to enhance our ability to
calibrate the J wave position in the IMF.

The study possesses several limitations that warrant
acknowledgment. Firstly, the BCG waveform can be distorted
or entirely submerged in motion artifacts, rendering it
undetectable. Additionally, body movements can lead to loss
of the original waveform. Secondly, suboptimal outcomes are
observed when extracting the L wave, M wave, and N wave using
the EEMD algorithm. Many individuals exhibit small amplitudes
for these waves in BCG signals. Moreover, the repeatability of the
M wave and N wave is relatively poor. Subsequent to EEMD and
multiple averaging, these waves nearly vanish, presenting
challenges in their effective identification within the IMFs.
Thirdly, further comprehensive investigations are required to
assess the algorithm’s suitability for long-term monitoring and
patients with cardiovascular diseases. Given the aforementioned
issues, we are presently developing enhanced acquisition
hardware, data recording, and signal processing systems to
facilitate the adoption of this non-invasive method in various
medical applications.

6 Conclusion

There is a trade-off between maximizing beat-to-beat heart rate
estimation accuracy and preserving the original BCG waveform
information. Most existing methods improve heart rate estimation
accuracy by sacrificing BCG waveform features. To address this
limitation, this paper proposes a novel BCG feature detection
algorithm that combines STFT and EEMD. By leveraging the
advantages of both algorithms, the proposed method achieves
high level heart rate estimation and precise localization of the IJK
wave in BCG. The proposed method enhances the BCG
morphological feature system and expands the available
indicators for subsequent studies of non-invasive sleep
monitoring, predicting atrial fibrillation, and cardiac function
monitoring.
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