3 research outputs found

    On the Real-Time Performance, Robustness and Accuracy of Medical Image Non-Rigid Registration

    Get PDF
    Three critical issues about medical image non-rigid registration are performance, robustness and accuracy. A registration method, which is capable of responding timely with an accurate alignment, robust against the variation of the image intensity and the missing data, is desirable for its clinical use. This work addresses all three of these issues. Unacceptable execution time of Non-rigid registration (NRR) often presents a major obstacle to its routine clinical use. We present a hybrid data partitioning method to parallelize a NRR method on a cooperative architecture, which enables us to get closer to the goal: accelerating using architecture rather than designing a parallel algorithm from scratch. to further accelerate the performance for the GPU part, a GPU optimization tool is provided to automatically optimize GPU execution configuration.;Missing data and variation of the intensity are two severe challenges for the robustness of the registration method. A novel point-based NRR method is presented to resolve mapping function (deformation field) with the point correspondence missing. The novelty of this method lies in incorporating a finite element biomechanical model into an Expectation and Maximization (EM) framework to resolve the correspondence and mapping function simultaneously. This method is extended to deal with the deformation induced by tumor resection, which imposes another challenge, i.e. incomplete intra-operative MRI. The registration is formulated as a three variable (Correspondence, Deformation Field, and Resection Region) functional minimization problem and resolved by a Nested Expectation and Maximization framework. The experimental results show the effectiveness of this method in correcting the deformation in the vicinity of the tumor. to deal with the variation of the intensity, two different methods are developed depending on the specific application. For the mono-modality registration on delayed enhanced cardiac MRI and cine MRI, a hybrid registration method is designed by unifying both intensity- and feature point-based metrics into one cost function. The experiment on the moving propagation of suspicious myocardial infarction shows effectiveness of this hybrid method. For the multi-modality registration on MRI and CT, a Mutual Information (MI)-based NRR is developed by modeling the underlying deformation as a Free-Form Deformation (FFD). MI is sensitive to the variation of the intensity due to equidistant bins. We overcome this disadvantage by designing a Top-to-Down K-means clustering method to naturally group similar intensities into one bin. The experiment shows this method can increase the accuracy of the MI-based registration.;In image registration, a finite element biomechanical model is usually employed to simulate the underlying movement of the soft tissue. We develop a multi-tissue mesh generation method to build a heterogeneous biomechanical model to realistically simulate the underlying movement of the brain. We focus on the following four critical mesh properties: tissue-dependent resolution, fidelity to tissue boundaries, smoothness of mesh surfaces, and element quality. Each mesh property can be controlled on a tissue level. The experiments on comparing the homogeneous model with the heterogeneous model demonstrate the effectiveness of the heterogeneous model in improving the registration accuracy

    Early Detection of Doxorubicin-Induced Cardiotoxicity Using Combined Biomechanical Modeling and Multi-Parametric Cardiovascular MRI

    Get PDF
    RÉSUMÉ La chimiothĂ©rapie Ă  la doxorubicine est efficace et est largement utilisĂ©e pour traiter la leucĂ©mie lymphoblastique aiguĂ«. Toutefois, son efficacitĂ© est entravĂ©e par un large spectre de cardiotoxicitĂ©s incluant des changements affectant Ă  la fois la morphologie et la fonction du myocarde. Ces changements dĂ©pendent principalement de la dose cumulĂ©e administrĂ©e au patient. Actuellement, trĂšs peu de techniques sont disponibles pour dĂ©tecter de telles cardiotoxicitĂ©s. L'utilisation d’images de fibres musculaires (par exemple, Ă  l’aide de l’imagerie des tenseurs de diffusion par IRM) ou des techniques d'imagerie 3D (par exemple, cinĂ© DENSE IRM) sont des alternatives prometteuses, cependant, leur application en clinique est limitĂ©e en raison du temps d'acquisition d’images et les erreurs d'estimation qui en rĂ©sultent. En revanche, l'utilisation de l'IRM multi-paramĂ©trique ainsi que le cinĂ© IRM sont des alternatives prometteuses, puisque ces techniques sont dĂ©jĂ  disponibles au niveau clinique. L’IRM multiparamĂ©trique incluant l’imagerie des temps de relaxation T1 et T2 peut ĂȘtre utile dans la dĂ©tection des lĂ©sions dans le tissu du myocarde alors que l’imagerie cinĂ© IRM peut ĂȘtre plus appropriĂ©e pour dĂ©tecter les changements fonctionnels au sein du myocarde. La combinaison de ces deux techniques peut Ă©galement permettre une caractĂ©risation complĂšte de la fonction du tissu myocardique. Dans ce projet, l'utilisation des temps de relaxation T1 prĂ©- et post-gadolinium et T2 est d'abord Ă©valuĂ©e et proposĂ©e pour dĂ©tecter les dommages myocardiques induits par la chimiothĂ©rapie Ă  la doxorubicine. En second lieu, l'utilisation de patrons 2D de dĂ©placements myocardiques est Ă©valuĂ©e dans le cadre de la dĂ©tection des dommages myocardiques et altĂ©ration fonctionnelle due au traitement Ă  la doxorubicine. Enfin, l'utilisation de la modĂ©lisation par Ă©lĂ©ments finis, incluant les contraintes et dĂ©formations mĂ©caniques est proposĂ©e pour Ă©valuer les changements dans les propriĂ©tĂ©s mĂ©caniques au niveau du myocarde, avec l’hypothĂšse que le traitement Ă  base de doxorubicine induit des changements importants Ă  la fois dans le tissu et au niveau de la fonction myocardique. Dans notre cohorte de survivants de cancer, des changements myocardiques locaux ont Ă©tĂ© trouvĂ©s entre le groupe Ă  risque standard et le groupe Ă  risque Ă©levĂ© lorsque le T1 prĂ©-gadolinium fut utilisĂ©. Ces changements ont Ă©tĂ© amplifiĂ©s avec l’utilisation d’agent de contraste tel que confirmĂ© par le coefficient de partition, ce qui suggĂšre que l’utilisation du T1 post-gadolonium et le coefficient de----------ABSTRACT Doxorubicin chemotherapy is effective and widely used to treat acute lymphoblastic leukemia. However, its effectiveness is hampered by a wide spectrum of dose-dependent cardiotoxicity including both morphological and functional changes affecting the myocardium. Currently, very few techniques are available for detecting such cardiotoxic effect. The use of muscle fibers orientation (e.g., diffusion tensor imaging DT-MRI) or 3D imaging techniques (e.g., cine DENSE MRI) are possible alternatives, however, their clinical application is limited due to the acquisition time and their estimation errors. In contrast, the use of multi-parametric MRI along with cine MRI is a promising alternative, since theses techniques are already available at a clinical level. Multiparametric MRI including T1 and T2 imaging may be helpful in detecting myocardial tissue damage, while cine MRI may be more appropriate to detect functional changes within the myocardium. The combination of these two techniques may further allow an extensive characterization of myocardial tissue function. In this doctoral project, the use of pre- and post-gadolinium T1 and T2 relaxation times is firstly assessed and proposed to detect myocardial damage induced by doxorubicin chemotherapy. Secondly, the use of 2D myocardial displacement patterns is assessed in detecting myocardial damage and functional alteration due to doxorubicin-based treatment. Finally, the use of finite element modeling including mechanical strains and stresses to evaluate mechanical properties changes within the myocardium is alternatively proposed, assuming that doxorubicin-based treatment induces significant changes to both myocardial tissue morphology and function. In our cohort of cancer survivors, local myocardial changes were found between standard risk and high risks group using pre-gadolinium T1 relaxation times. These changes were further amplified with gadolinium enhancement, as confirmed by the use of partition coefficient, suggesting this MRI parameter along with partition coefficient as candidates imaging markers of doxorubicin induced cardiomyopathy. The use of T2 on the other hand showed that the high risk group of cancer survivors had higher T2 relaxation times compared to the standard risk group and similar to reported values. Though, a larger cohort of cancer survivors may be required to assess the use of T1 and T2 relaxation time as possible indices for myocardial tissue damage in the onset of doxorubicin-induced cardiotoxicity
    corecore