3,463 research outputs found
An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa
Open Access Journal; Published online: 06 Nov 2019Maize production in West and Central Africa (WCA) is constrained by a wide range of interacting stresses that keep productivity below potential yields. Among the many problems afflicting maize production in WCA, drought, foliar diseases, and parasitic weeds are the most critical. Several decades of efforts devoted to the genetic improvement of maize have resulted in remarkable genetic gain, leading to increased yields of maize on farmers’ fields. The revolution unfolding in the areas of genomics, bioinformatics, and phenomics is generating innovative tools, resources, and technologies for transforming crop breeding programs. It is envisaged that such tools will be integrated within maize breeding programs, thereby advancing these programs and addressing current and future challenges. Accordingly, the maize improvement program within International Institute of Tropical Agriculture (IITA) is undergoing a process of modernization through the introduction of innovative tools and new schemes that are expected to enhance genetic gains and impact on smallholder farmers in the region. Genomic tools enable genetic dissections of complex traits and promote an understanding of the physiological basis of key agronomic and nutritional quality traits. Marker-aided selection and genome-wide selection schemes are being implemented to accelerate genetic gain relating to yield, resilience, and nutritional quality. Therefore, strategies that effectively combine genotypic information with data from field phenotyping and laboratory-based analysis are currently being optimized. Molecular breeding, guided by methodically defined product profiles tailored to different agroecological zones and conditions of climate change, supported by state-of-the-art decision-making tools, is pivotal for the advancement of modern, genomics-aided maize improvement programs. Accelerated genetic gain, in turn, catalyzes a faster variety replacement rate. It is critical to forge and strengthen partnerships for enhancing the impacts of breeding products on farmers’ livelihood. IITA has well-established channels for delivering its research products/technologies to partner organizations for further testing, multiplication, and dissemination across various countries within the subregion. Capacity building of national agricultural research system (NARS) will facilitate the smooth transfer of technologies and best practices from IITA and its partners
NGS-based genotyping, high-throughput phenotyping and genome-wide association studies laid the foundations for next-generation breeding in horticultural crops
Demographic trends and changes to climate require a more efficient use of plant genetic resources in breeding programs. Indeed, the release of high-yielding varieties has resulted in crop genetic erosion and loss of diversity. This has produced an increased susceptibility to severe stresses and a reduction of several food quality parameters. Next generation sequencing (NGS) technologies are being increasingly used to explore “gene space” and to provide high-resolution profiling of nucleotide variation within germplasm collections. On the other hand, advances in high-throughput phenotyping are bridging the genotype-to-phenotype gap in crop selection. The combination of allelic and phenotypic data points via genome-wide association studies is facilitating the discovery of genetic loci that are associated with key agronomic traits. In this review, we provide a brief overview on the latest NGS-based and phenotyping technologies and on their role to unlocking the genetic potential of vegetable crops; then, we discuss the paradigm shift that is underway in horticultural crop breeding
Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance
To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant's response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops
Measuring the dynamic photosynthome
Background: Photosynthesis underpins plant productivity and yet is notoriously sensitive to small changes inenvironmental conditions, meaning that quantitation in nature across different time scales is not straightforward. The ‘dynamic’ changes in photosynthesis (i.e. the kinetics of the various reactions of photosynthesis in response to environmental shifts) are now known to be important in driving crop yield.
Scope: It is known that photosynthesis does not respond in a timely manner, and even a small temporal “mismatch” between a change in the environment and the appropriate response of photosynthesis toward optimality can result in a fall in productivity. Yet the most commonly measured parameters are still made at steady state or a temporary steady state (including those for crop breeding purposes), meaning that new photosynthetic traits remain undiscovered.
Conclusions: There is a great need to understand photosynthesis dynamics from a mechanistic and biological viewpoint especially when applied to the field of ‘phenomics’ which typically uses large genetically diverse populations of plants. Despite huge advances in measurement technology in recent years, it is still unclear whether we possess the capability of capturing and describing the physiologically relevant dynamic features of field photosynthesis in sufficient detail. Such traits are highly complex, hence we dub this the ‘photosynthome’. This review sets out the state of play and describes some approaches that could be made to address this challenge with reference to the relevant biological processes involved
Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions
Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques
Maize is the most cultivated cereal in Africa in terms of land area and production, but low soil nitrogen availability often constrains yields. Developing new maize varieties with high and reliable yields using traditional crop breeding techniques in field conditions can be slow and costly. Remote sensing has become an important tool in the modernization of field-based high-throughput plant phenotyping (HTPP), providing faster gains towards the improvement of yield potential and adaptation to abiotic and biotic limiting conditions. We evaluated the performance of a set of remote sensing indices derived from red–green–blue (RGB) images along with field-based multispectral normalized difference vegetation index (NDVI) and leaf chlorophyll content (SPAD values) as phenotypic traits for assessing maize performance under managed low-nitrogen conditions. HTPP measurements were conducted from the ground and from an unmanned aerial vehicle (UAV). For the ground-level RGB indices, the strongest correlations to yield were observed with hue, greener green area (GGA), and a newly developed RGB HTPP index, NDLab (normalized difference Commission Internationale de I´Edairage (CIE)Lab index), while GGA and crop senescence index (CSI) correlated better with grain yield from the UAV. Regarding ground sensors, SPAD exhibited the closest correlation with grain yield, notably increasing in its correlation when measured in the vegetative stage. Additionally, we evaluated how different HTPP indices contributed to the explanation of yield in combination with agronomic data, such as anthesis silking interval (ASI), anthesis date (AD), and plant height (PH). Multivariate regression models, including RGB indices (R2 > 0.60), outperformed other models using only agronomic parameters or field sensors (R2 > 0.50), reinforcing RGB HTPP’s potential to improve yield assessments. Finally, we compared the low-N results to the same panel of 64 maize genotypes grown under optimal conditions, noting that only 11% of the total genotypes appeared in the highest yield producing quartile for both trials. Furthermore, we calculated the grain yield loss index (GYLI) for each genotype, which showed a large range of variability, suggesting that low-N performance is not necessarily exclusive of high productivity in optimal conditions.This research and APC was funded by Bill & Melinda Gates Foundation and USAID Stress Tolerant Maize for Africa program, grant number [OPP1134248], and the MAIZE CGIAR research program. The CGIAR Research Program MAIZE receives W1&W2 support from the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, U.K., U.S., and the World Bank
Phenotyping of disease resistance, phenology and nutrient use efficiency of a wide barley germplasm adapted to high latitudes
Linking weather data, satellite imagery and field observations to household food production and child undernutrition: an exploratory study in Burkina Faso
Worldwide, 50 million children under five are acutely malnourished, while 16 million amongst them suffer from severe wasting. Chronic malnutrition is more common and accounts for an estimated 159 million children, meaning that approximately 23.8% of all children under five worldwide are stunted. The proportion of stunted children has decreased worldwide between 1990 (39.6%) and 2014 (23.8%), but the progress has been unequal. While Asia as a whole reduced stunting by half (-47.0%) between 1990 and 2014, there are still 78 million stunted children in South Asia alone. Unlike Asia, the African continent has reduced stunting by just one quarter (24.0%). In contrast, the absolute number of stunted children in Africa has still increased, from 47 million in 1990, to 58 million in 2014. Under-nutrition is caused by a complex web of interdependent environmental/climatic, agricultural and socio-economic factors. Climate change has recently been identified as a major risk factor for childhood undernutrition. However, the scientific evidence base for this is weak. No study has so far simultaneously combined of the well-known drivers of undernutrition with climate change while being grounded in one population in one-time and in one location. Such studies are prerequisite for the relative attribution of the various risk factors, including climate chance, as causes of childhood undernutrition. In this exploratory study, methods from multiple sectors were applied to 20 randomly selected households in Bourasso in rural Burkina Faso, where more than 80% of the population are subsistence farmers, i.e. live off their fields. Well tested methods, such as household-level agricultural and nutritional surveys, anthropometric measurement of undernutrition with innovative methods, measuring household level-crop yields, were combined. This was done by participatory mapping of each household’s plots. Remote sensing algorithms were applied to RapidEye satellite scenes covering the study area in order to map the actual cultivated area and to derive qualitative harvest estimates for the surveyed micro-fields. Weather data were obtained from a research meteorological field station, about 20 km away from Bourasso. In addition to bringing field methods from different sectors together through the lens of a household, one further advanced method was integrated: The linkage between each household plot limits and their integration into the satellite scene making it possible to estimate crop yields at the plot level for each household and linking this to the nutritional status of that specific household. Thus the exploratory study produced the following results: High-resolution remote sensing data can assist studies on malnutrition in Burkina Faso; RapidEye is a promising data source in regard to the spatial resolution for micro-field assessments; The strong inter-annual variation of malnutrition is suggestive that climate is a casual factor in the absence of other explanatory factors (political unrest, price shocks of inputs, epidemics). Population-based studies replicating the described multi-sectoral toolbox should be upscaled to larger sample sizes and longer observational time series. This could contribute to generating crucial climate health impact functions, in this case for malnutrition
Report of the Fifth External Program and Management Review (EPMR) of the Africa Rice Center (WARDA)
- …
