3 research outputs found

    An Efficient Feedback Scheme with Adaptive Bit Allocation for Dispersive MISO Systems

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Florence, Italy, 200

    Performance Analysis of Channel-Aware Media Access Control Schemes

    Get PDF
    This thesis proposes a new Channel-Aware MAC (CA-MAC) protocol that allows more than two simultaneous transmissions to take place within a single wireless collision domain. In this proposed work, Multiple-Input Multiple-Output (MIMO) system is used to achieve higher spectral efficiency. The MIMO-based PHY layer has been adopted to help in controlling the transmission and to avoid any collisions by using weights gains technique on the antenna transmission, and by recovering any possible collisions using ZigZag decoding. In order to develop CA-MAC algorithm, to exploit the full potential of MIMO system, the library of 802.11x standard has been modified. NS-2 based simulations were conducted to study the performance of the proposed system. Detailed analysis and comparisons with current protocols schemes are presented

    Design and analysis of iteratively decodable codes for ISI channels

    Get PDF
    Recent advancements in iterative processing have allowed communication systems to perform close to capacity limits withmanageable complexity.For manychannels such as the AWGN and flat fading channels, codes that perform only a fraction of a dB from the capacity have been designed in the literature. In this dissertation, we will focus on the design and analysis of near-capacity achieving codes for another important class of channels, namely inter-symbol interference (ISI)channels. We propose various coding schemes such as low-density parity-check (LDPC) codes, parallel and serial concatenations for ISI channels when there is no spectral shaping used at the transmitter. The design and analysis techniques use the idea of extrinsic information transfer (EXIT) function matching and provide insights into the performance of different codes and receiver structures. We then present a coding scheme which is the concatenation of an LDPC code with a spectral shaping block code designed to be matched to the channel??s spectrum. We will discuss how to design the shaping code and the outer LDPC code. We will show that spectral shaping matched codes can be used for the parallel concatenation to achieve near capacity performance. We will also discuss the capacity of multiple antenna ISI channels. We study the effects of transmitter and receiver diversities and noisy channel state information on channel capacity
    corecore