1,719 research outputs found

    Securing NextG networks with physical-layer key generation: A survey

    Get PDF
    As the development of next-generation (NextG) communication networks continues, tremendous devices are accessing the network and the amount of information is exploding. However, with the increase of sensitive data that requires confidentiality to be transmitted and stored in the network, wireless network security risks are further amplified. Physical-layer key generation (PKG) has received extensive attention in security research due to its solid information-theoretic security proof, ease of implementation, and low cost. Nevertheless, the applications of PKG in the NextG networks are still in the preliminary exploration stage. Therefore, we survey existing research and discuss (1) the performance advantages of PKG compared to cryptography schemes, (2) the principles and processes of PKG, as well as research progresses in previous network environments, and (3) new application scenarios and development potential for PKG in NextG communication networks, particularly analyzing the effect and prospects of PKG in massive multiple-input multiple-output (MIMO), reconfigurable intelligent surfaces (RISs), artificial intelligence (AI) enabled networks, integrated space-air-ground network, and quantum communication. Moreover, we summarize open issues and provide new insights into the development trends of PKG in NextG networks

    Coverage Performance Analysis of Reconfigurable Intelligent Surface-aided Millimeter Wave Network with Blockage Effect

    Get PDF
    In order to solve spectrum resource shortage and satisfy immense wireless data traffic demands, millimeter wave (mmWave) frequency with large available bandwidth has been proposed for wireless communication in 5G and beyond 5G. However, mmWave communications are susceptible to blockages. This characteristic limits the network performance. Meanwhile, reconfigurable intelligent surface (RIS) has been proposed to improve the propagation environment and extend the network coverage. Unlike traditional wireless technologies that improve transmission quality from transceivers, RISs enhance network performance by adjusting the propagation environment. One of the promising applications of RISs is to provide indirect line-of-sight (LoS) paths when the direct LoS path between transceivers does not exist. This application makes RIS particularly useful in mmWave communications. With effective RIS deployment, the mmWave RIS-aided network performance can be enhanced significantly. However, most existing works have analyzed RIS-aided network performance without exploiting the flexibility of RIS deployment and/or considering blockage effect, which leaves huge research gaps in RIS-aided networks. To fill the gaps, this thesis develops RIS-aided mmWave network models considering blockage effect under the stochastic geometry framework. Three scenarios, i.e., indoor, outdoor and outdoor-to-indoor (O2I) RIS-aided networks, are investigated. Firstly, LoS propagation is hard to be guaranteed in indoor environments since blockages are densely distributed. Deploying RISs to assist mmWave transmission is a promising way to overcome this challenge. In the first paper, we propose an indoor mmWave RIS-aided network model capturing the characteristics of indoor environments. With a given base station (BS) density, whether deploying RISs or increasing BS density to further enhance the network coverage is more cost-effective is investigated. We present a coverage calculation algorithm which can be adapted for different indoor layouts. Then, we jointly analyze the network cost and coverage probability. Our results indicate that deploying RISs with an appropriate number of BSs is more cost-effective for achieving an adequate coverage probability than increasing BSs only. Secondly, for a given total number of passive elements, whether fewer large-scale RISs or more small-scale RISs should be deployed has yet to be investigated in the presence of the blockage effect. In the second paper, we model and analyze a 3D outdoor mmWave RIS-aided network considering both building blockages and human-body blockages. Based on the proposed model, the analytical upper and lower bounds of the coverage probability are derived. Meanwhile, the closed-form coverage probability when RISs are much closer to the UE than the BS is derived. In terms of coverage enhancement, we reveal that sparsely deployed large-scale RISs outperform densely deployed small-scale RISs in scenarios of sparse blockages and/or long transmission distances, while densely deployed small-scale RISs win in scenarios of dense blockages and/or short transmission distances. Finally, building envelope (the exterior wall of a building) makes outdoor mmWave BS difficult to communicate with indoor UE. Transmissive RISs with passive elements have been proposed to refract the signal when the transmitter and receiver are on the different side of the RIS. Similar to reflective RISs, the passive elements of a transmissive RIS can implement phase shifts and adjust the amplitude of the incident signals. By deploying transmissive RISs on the building envelope, it is feasible to implement RIS-aided O2I mmWave networks. In the third paper, we develop a 3D RIS-aided O2I mmWave network model with random indoor blockages. Based on the model, a closed-form coverage probability approximation considering blockage spatial correlation is derived, and multiple-RIS deployment strategies are discussed. For a given total number of RIS passive elements, the impact of blockage density, the number and locations of RISs on the coverage probability is analyzed. All the analytical results have been validated by Monte Carlo simulation. The observations from the result analysis provide guidelines for the future deployment of RIS-aided mmWave networks

    AI-based Radio and Computing Resource Allocation and Path Planning in NOMA NTNs: AoI Minimization under CSI Uncertainty

    Full text link
    In this paper, we develop a hierarchical aerial computing framework composed of high altitude platform (HAP) and unmanned aerial vehicles (UAVs) to compute the fully offloaded tasks of terrestrial mobile users which are connected through an uplink non-orthogonal multiple access (UL-NOMA). To better assess the freshness of information in computation-intensive applications the criterion of age of information (AoI) is considered. In particular, the problem is formulated to minimize the average AoI of users with elastic tasks, by adjusting UAVs trajectory and resource allocation on both UAVs and HAP, which is restricted by the channel state information (CSI) uncertainty and multiple resource constraints of UAVs and HAP. In order to solve this non-convex optimization problem, two methods of multi-agent deep deterministic policy gradient (MADDPG) and federated reinforcement learning (FRL) are proposed to design the UAVs trajectory, and obtain channel, power, and CPU allocations. It is shown that task scheduling significantly reduces the average AoI. This improvement is more pronounced for larger task sizes. On one hand, it is shown that power allocation has a marginal effect on the average AoI compared to using full transmission power for all users. Compared with traditional transmission schemes, the simulation results show our scheduling scheme results in a substantial improvement in average AoI

    Energy Efficiency and Throughput Optimization in 5G Heterogeneous Networks

    Get PDF
    Device to device communication offers an optimistic technology for 5G network which aims to enhance data rate, reduce latency and cost, improve energy efficiency as well as provide other desired features. 5G heterogeneous network (5GHN) with a decoupled association strategy of downlink (DL) and uplink (UL) is an optimistic solution for challenges which are faced in 4G heterogeneous network (4GHN). Research work presented in this paper evaluates performance of 4GHN along with DL and UL coupled (DU-CP) access scheme in comparison with 5GHN with UL and DL decoupled (DU-DCP) access scheme in terms of energy efficiency and network throughput in 4-tier heterogeneous networks. Energy and throughput are optimized for both scenarios i.e. DU-CP and DU-DCP and the results are compared. Detailed performance analysis of DU-CP and DU-DCP access schemes has been done with the help of comparisons of results achieved by implementing genetic algorithm (GA) and particle swarm optimization (PSO). Both these algorithms are suited for the non linear problem under investigation where the search space is large. Simulation results have shown that the DU-DCP access scheme gives better performance as compared to DU-CP scheme in a 4-tier heterogeneous network in terms of network throughput and energy efficiency. PSO achieves an energy efficiency of 12 Mbits/joule for DU-CP and 42 Mbits/joule for DU-DCP, whereas GA yields an energy efficiency of 28 Mbits/joule for DU-CP and 55 Mbits/joule for DU-DCP. Performance of the proposed method is compared with that of three other schemes. The results show that the DU-DCP scheme using GA outperforms the compared methods

    AI-Based Q-Learning Approach for Performance Optimization in MIMO-NOMA Wireless Communication Systems

    Get PDF
    In this paper, we investigate the performance enhancement of Multiple Input, Multiple Output, and Non-Orthogonal Multiple Access (MIMO-NOMA) wireless communication systems using an Artificial Intelligence (AI) based Q-Learning reinforcement learning approach. The primary challenge addressed is the optimization of power allocation in a MIMO-NOMA system, a complex task given the non-convex nature of the problem. Our proposed Q-Learning approach adaptively adjusts power allocation strategy for proximal and distant users, optimizing the trade-off between various conflicting metrics and significantly improving the system’s performance. Compared to traditional power allocation strategies, our approach showed superior performance across three principal parameters: spectral efficiency, achievable sum rate, and energy efficiency. Specifically, our methodology achieved approximately a 140% increase in the achievable sum rate and about 93% improvement in energy efficiency at a transmitted power of 20 dB while also enhancing spectral efficiency by approximately 88.6% at 30 dB transmitted Power. These results underscore the potential of reinforcement learning techniques, particularly Q-Learning, as practical solutions for complex optimization problems in wireless communication systems. Future research may investigate the inclusion of enhanced channel simulations and network limitations into the machine learning framework to assess the feasibility and resilience of such intelligent approaches

    Multi-objective resource optimization in space-aerial-ground-sea integrated networks

    Get PDF
    Space-air-ground-sea integrated (SAGSI) networks are envisioned to connect satellite, aerial, ground, and sea networks to provide connectivity everywhere and all the time in sixth-generation (6G) networks. However, the success of SAGSI networks is constrained by several challenges including resource optimization when the users have diverse requirements and applications. We present a comprehensive review of SAGSI networks from a resource optimization perspective. We discuss use case scenarios and possible applications of SAGSI networks. The resource optimization discussion considers the challenges associated with SAGSI networks. In our review, we categorized resource optimization techniques based on throughput and capacity maximization, delay minimization, energy consumption, task offloading, task scheduling, resource allocation or utilization, network operation cost, outage probability, and the average age of information, joint optimization (data rate difference, storage or caching, CPU cycle frequency), the overall performance of network and performance degradation, software-defined networking, and intelligent surveillance and relay communication. We then formulate a mathematical framework for maximizing energy efficiency, resource utilization, and user association. We optimize user association while satisfying the constraints of transmit power, data rate, and user association with priority. The binary decision variable is used to associate users with system resources. Since the decision variable is binary and constraints are linear, the formulated problem is a binary linear programming problem. Based on our formulated framework, we simulate and analyze the performance of three different algorithms (branch and bound algorithm, interior point method, and barrier simplex algorithm) and compare the results. Simulation results show that the branch and bound algorithm shows the best results, so this is our benchmark algorithm. The complexity of branch and bound increases exponentially as the number of users and stations increases in the SAGSI network. We got comparable results for the interior point method and barrier simplex algorithm to the benchmark algorithm with low complexity. Finally, we discuss future research directions and challenges of resource optimization in SAGSI networks

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Spatial channel degrees of freedom for optimum antenna arrays

    Get PDF
    One of the ultimate goals of future wireless networks is to maximize data rates to accommodate bandwidth-hungry services and applications. Thus, extracting the maximum amount of information bits for given spatial constraints when designing wireless systems will be of great importance. In this paper, we present antenna array topologies that maximize the communication channel capacity for given number of array elements while occupying minimum space. Capacity is maximized via the development of an advanced particle swarm optimization (PSO) algorithm devising optimum standardized and arbitrarily-shaped antenna array topologies. Number of array elements and occupied space are informed by novel heuristic spatial degrees of freedom (SDoF) formulations which rigorously generalize existing SDoF formulas. Our generalized SDoF formulations rely on the differential entropy of three-dimensional (3D) angle of arrival (AOA) distributions and can associate the number of array elements and occupied space for any AOA distribution. The proposed analysis departs from novel closed-form spatial correlation functions (SCFs) of arbitrarily-positioned array elements for all classes of 3D multipath propagation channels, namely, isotropic, omnidirectional, and directional. Extensive simulation runs and comparisons with existing trivial solutions verify correctness of our SDoF formulations resulting in optimum antenna array topologies with maximum capacity performance and minimum space occupancy
    • …
    corecore