167 research outputs found

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen

    Bio-Inspired Resource Allocation for Relay-Aided Device-to-Device Communications

    Full text link
    The Device-to-Device (D2D) communication principle is a key enabler of direct localized communication between mobile nodes and is expected to propel a plethora of novel multimedia services. However, even though it offers a wide set of capabilities mainly due to the proximity and resource reuse gains, interference must be carefully controlled to maximize the achievable rate for coexisting cellular and D2D users. The scope of this work is to provide an interference-aware real-time resource allocation (RA) framework for relay-aided D2D communications that underlay cellular networks. The main objective is to maximize the overall network throughput by guaranteeing a minimum rate threshold for cellular and D2D links. To this direction, genetic algorithms (GAs) are proven to be powerful and versatile methodologies that account for not only enhanced performance but also reduced computational complexity in emerging wireless networks. Numerical investigations highlight the performance gains compared to baseline RA methods and especially in highly dense scenarios which will be the case in future 5G networks.Comment: 6 pages, 6 figure

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mmWave) communications included are emerging as a promising candidate for the fifth generation mobile network. With highly directional antenna arrays, mmWave links are able to provide several-Gbps transmission rate. However, mmWave links are easily blocked without line of sight. On the other hand, D2D communications have been proposed to support many content based applications, and need to share resources with users in HCNs to improve spectral reuse and enhance system capacity. Consequently, an efficient resource allocation scheme for D2D pairs among both mmWave and the cellular carrier band is needed. In this paper, we first formulate the problem of the resource allocation among mmWave and the cellular band for multiple D2D pairs from the view point of game theory. Then, with the characteristics of cellular and mmWave communications considered, we propose a coalition formation game to maximize the system sum rate in statistical average sense. We also theoretically prove that our proposed game converges to a Nash-stable equilibrium and further reaches the near-optimal solution with fast convergence rate. Through extensive simulations under various system parameters, we demonstrate the superior performance of our scheme in terms of the system sum rate compared with several other practical schemes.Comment: 13 pages, 12 figure

    Advanced Technologies for Device-to-device Communications Underlaying Cellular Networks

    Get PDF
    The past few years have seen a major change in cellular networks, as explosive growth in data demands requires more and more network capacity and backhaul capability. New wireless technologies have been proposed to tackle these challenges. One of the emerging technologies is device-to-device (D2D) communications. It enables two cellular user equip- ment (UEs) in proximity to communicate with each other directly reusing cellular radio resources. In this case, D2D is able to of oad data traf c from central base stations (BSs) and signi cantly improve the spectrum ef ciency of a cellular network, and thus is one of the key technologies for the next generation cellular systems. Radio resource management (RRM) for D2D communications and how to effectively exploit the potential bene ts of D2D are two paramount challenges to D2D communications underlaying cellular networks. In this thesis, we focus on four problems related to these two challenges. In Chapter 2, we utilise the mixed integer non-linear programming (MINLP) to model and solve the RRM optimisation problems for D2D communications. Firstly we consider the RRM optimisation problem for D2D communications underlaying the single carrier frequency division multiple access (SC-FDMA) system and devise a heuristic sub- optimal solution to it. Then we propose an optimised RRM mechanism for multi-hop D2D communications with network coding (NC). NC has been proven as an ef cient technique to improve the throughput of ad-hoc networks and thus we apply it to multi-hop D2D communications. We devise an optimal solution to the RRM optimisation problem for multi-hop D2D communications with NC. In Chapter 3, we investigate how the location of the D2D transmitter in a cell may affect the RRM mechanism and the performance of D2D communications. We propose two optimised location-based RRM mechanisms for D2D, which maximise the throughput and the energy ef ciency of D2D, respectively. We show that, by considering the location information of the D2D transmitter, the MINLP problem of RRM for D2D communications can be transformed into a convex optimisation problem, which can be ef ciently solved by the method of Lagrangian multipliers. In Chapter 4, we propose a D2D-based P2P le sharing system, which is called Iunius. The Iunius system features: 1) a wireless P2P protocol based on Bittorrent protocol in the application layer; 2) a simple centralised routing mechanism for multi-hop D2D communications; 3) an interference cancellation technique for conventional cellular (CC) uplink communications; and 4) a radio resource management scheme to mitigate the interference between CC and D2D communications that share the cellular uplink radio resources while maximising the throughput of D2D communications. We show that with the properly designed application layer protocol and the optimised RRM for D2D communications, Iunius can signi cantly improve the quality of experience (QoE) of users and of oad local traf c from the base station. In Chapter 5, we combine LTE-unlicensed with D2D communications. We utilise LTE-unlicensed to enable the operation of D2D in unlicensed bands. We show that not only can this improve the throughput of D2D communications, but also allow D2D to work in the cell central area, which normally regarded as a “forbidden area” for D2D in existing works. We achieve these results mainly through numerical optimisation and simulations. We utilise a wide range of numerical optimisation theories in our works. Instead of utilising the general numerical optimisation algorithms to solve the optimisation problems, we modify them to be suitable for the speci c problems, thereby reducing the computational complexity. Finally, we evaluate our proposed algorithms and systems through sophisticated numer- ical simulations. We have developed a complete system-level simulation framework for D2D communications and we open-source it in Github: https://github.com/mathwuyue/py- wireless-sys-sim

    Distributed Artificial Intelligence Solution for D2D Communication in 5G Networks

    Full text link
    Device to Device (D2D) Communication is one of the technology components of the evolving 5G architecture, as it promises improvements in energy efficiency, spectral efficiency, overall system capacity, and higher data rates. The above noted improvements in network performance spearheaded a vast amount of research in D2D, which have identified significant challenges that need to be addressed before realizing their full potential in emerging 5G Networks. Towards this end, this paper proposes the use of a distributed intelligent approach to control the generation of D2D networks. More precisely, the proposed approach uses Belief-Desire-Intention (BDI) intelligent agents with extended capabilities (BDIx) to manage each D2D node independently and autonomously, without the help of the Base Station. The paper includes detailed algorithmic description for the decision of transmission mode, which maximizes the data rate, minimizes the power consumptions, while taking into consideration the computational load. Simulations show the applicability of BDI agents in jointly solving D2D challenges.Comment: 10 pages,9 figure
    corecore