56 research outputs found

    Capacity Theorems for Quantum Multiple Access Channels

    Full text link
    We consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multi-letter characterizations of two different two-dimensional capacity regions. The first region characterizes the rates at which it is possible for one sender to send classical information while the other sends quantum information. The second region gives the rates at which each sender can send quantum information. We give an example of a channel for which each region has a single-letter description, concluding with a characterization of the rates at which each user can simultaneously send classical and quantum information.Comment: 5 pages. Conference version of quant-ph/0501045, to appear in the proceedings of the IEEE International Symposium on Information Theory, Adelaide, Australia, 200

    Capacity Theorems for Quantum Multiple Access Channels: Classical-Quantum and Quantum-Quantum Capacity Regions

    Full text link
    We consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multi-letter characterizations of two different two-dimensional capacity regions. The first region is comprised of the rates at which it is possible for one sender to send classical information, while the other sends quantum information. The second region consists of the rates at which each sender can send quantum information. For each region, we give an example of a channel for which the corresponding region has a single-letter description. One of our examples relies on a new result proved here, perhaps of independent interest, stating that the coherent information over any degradable channel is concave in the input density operator. We conclude with connections to other work and a discussion on generalizations where each user simultaneously sends classical and quantum information.Comment: 38 pages, 1 figure. Fixed typos, added new example. Submitted to IEEE Tranactions on Information Theor

    Capacity Theorems for Quantum Multiple-Access Channels: Classical-Quantum and Quantum-Quantum Capacity Regions

    Get PDF
    In this paper, we consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multiletter characterizations of two different two-dimensional capacity regions. The first region comprises the rates at which it is possible for one sender to send classical information, while the other sends quantum information. The second region consists of the rates at which each sender can send quantum information. For each region, we give an example of a channel for which the corresponding region has a single-letter description. One of our examples relies on a new result proved here, perhaps of independent interest, stating that the coherent information over any degradable channel is concave in the input density operator. We conclude with connections to other work and a discussion on generalizations where each user simultaneously sends classical and quantum information

    Hybrid Codes

    Full text link
    A hybrid code can simultaneously encode classical and quantum information into quantum digits such that the information is protected against errors when transmitted through a quantum channel. It is shown that a hybrid code has the remarkable feature that it can detect more errors than a comparable quantum code that is able to encode the classical and quantum information. Weight enumerators are introduced for hybrid codes that allow to characterize the minimum distance of hybrid codes. Surprisingly, the weight enumerators for hybrid codes do not obey the usual MacWilliams identity.Comment: 5 page

    Nonadditivity effects in classical capacities of quantum multiple-access channels

    Full text link
    We study classical capacities of quantum multi-access channels in geometric terms revealing breaking of additivity of Holevo-like capacity. This effect is purely quantum since, as one points out, any classical multi-access channels have their regions additive. The observed non-additivity in quantum version presented here seems to be the first effect of this type with no additional resources like side classical or quantum information (or entanglement) involved. The simplicity of quantum channels involved resembles butterfly effect in case of classical channel with two senders and two receivers.Comment: 5 pages, 5 figure

    Additive Extensions of a Quantum Channel

    Full text link
    We study extensions of a quantum channel whose one-way capacities are described by a single-letter formula. This provides a simple technique for generating powerful upper bounds on the capacities of a general quantum channel. We apply this technique to two qubit channels of particular interest--the depolarizing channel and the channel with independent phase and amplitude noise. Our study of the latter demonstrates that the key rate of BB84 with one-way post-processing and quantum bit error rate q cannot exceed H(1/2-2q(1-q)) - H(2q(1-q)).Comment: 6 pages, one figur

    A decoupling approach to the quantum capacity

    Get PDF
    We give a short proof that the coherent information is an achievable rate for the transmission of quantum information through a noisy quantum channel. Our method is to produce random codes by performing a unitarily covariant projective measurement on a typical subspace of a tensor power state. We show that, provided the rank of each measurement operator is sufficiently small, the transmitted data will with high probability be decoupled from the channel's environment. We also show that our construction leads to random codes whose average input is close to a product state and outline a modification yielding unitarily invariant ensembles of maximally entangled codes.Comment: 13 pages, published versio

    Unconstrained distillation capacities of a pure-loss bosonic broadcast channel

    Get PDF
    Bosonic channels are important in practice as they form a simple model for free-space or fiber-optic communication. Here we consider a single-sender two-receiver pure-loss bosonic broadcast channel and determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. We show how the state merging protocol leads to achievable rates in this setting, giving an inner bound on the capacity region. We also evaluate an outer bound on the region by using the relative entropy of entanglement and a `reduction by teleportation' technique. The outer bounds match the inner bounds in the infinite-energy limit, thereby establishing the unconstrained capacity region for such channels. Our result could provide a useful benchmark for implementing a broadcasting of entanglement and secret key through such channels. An important open question relevant to practice is to determine the capacity region in both this setting and the single-sender single-receiver case when there is an energy constraint on the transmitter.Comment: v2: 6 pages, 3 figures, introduction revised, appendix added where the result is extended to the 1-to-m pure-loss bosonic broadcast channel. v3: minor revision, typo error correcte
    • …
    corecore