1,363 research outputs found

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    A Scheduling Algorithm for Providing QoS Guarantees in 802.11e WLANs

    Get PDF
    In this paper we propose a scheduling algorithm for supporting Quality of Service (QoS) in an IEEE 802.11e network using the HCF Controlled Channel Access (HCCA) function. This is derived from Constant Bandwidth Server with Resource Constraints and adapted to wireless medium. It consists of a procedure to actually schedule transmission opportunities to HCCA flows with Quality of Service guarantees, in particular in the case of multimedia applications which present variable bit rate traffic

    Providing Enhanced Framework to support QoS in Open Wireless Architecture

    Get PDF
    This paper presents a novel approach to support Quality of Service for Open Wireless Architectures (OWA), building a suitable framework over the top of the heterogeneous wireless MACs. It lets to enhance the existing QoS support provided by standard MAC protocols and it uses the contract model to guarantee QoS, taking into account the applications requests. It negotiates dynamically Application Level Contracts which will be translated seamlessly in Resource Level Contracts for the underlying network services. It receives the feedback by underlying network services to adjust the scheduling algorithms and policies to provide hard and soft guarantees. The framework comprises QoS Manager, Admission Control, Enhanced Scheduler, Predictor and Feedback System. The QoS manager component is able to dynamically manage available resources under different load conditions. A IEEE 802.11e Wireless LAN is simulated to show the benefits of this approach

    W-CBS: A Scheduling Algorithm for Supporting QoS in IEEE 802.11e

    Get PDF
    This paper presents a new scheduling algorithm, the Wireless Constant Bandwidth Server (W-CBS) for the Access Points of an IEEE 802.11e wireless networks to support traffic streams with Quality of Service guarantees, in particular in the case of multimedia applications which present variable bit rate traffic. The performance of W-CBS is compared to that of the reference scheduler defined in 802.11e standard using the ns2 simulator. The results show that the W-CBS outperforms the reference scheduler with VBR traffic, in terms of resource utilization and maximum admitted flows

    A Greedy Reclaiming Scheduler for IEEE 802.11e HCCA Real-Time Networks

    Get PDF
    The IEEE 802.11e standard introduces Quality of Service (QoS) support for wireless local area networks and suggests how to design a tailored HCF Controlled Channel Access (HCCA) scheduler. However the reference scheduling algorithm is suitable to assure service guarantees only for Constant Bit Rate traffic streams, whereas shows its limits for Variable Bit Rate traffic. Despite the numerous alternative schedulers proposed to improve the QoS support for multimedia applications, in the case of VBR traffic satisfactory real-time performance has not been yet achieved. This paper presents a new scheduling algorithm, Unused Time Shifting Scheduler (UTSS). It integrates a mechanism for bandwidth reclaiming into a HCCA real-time scheduler. UTSS assigns the unused portion of each transmission opportunity to the next scheduled traffic stream. Thanks to such feature, traffic variability is absorbed, reducing the waste of resources. The analytical evaluation, corroborated by the simulation results, shows that UTSS is suitable to reduce the delay experienced by VBR traffic streams and to increase the maximum burstiness sustainable by the network

    Enhancement of QoS support of HCCA schedulers using EDCA function in IEEE 802.11e networks

    Get PDF
    The IEEE 802.11e standard introduces Quality of Service support for wireless local area networks through two MAC functions: Enhanced Distributed Channel Access (EDCA) and HCF Controlled Channel Access (HCCA). While the former provides prioritized contention-based access to the medium, the latter uses a parameterized contention-free polling scheme. Several studies have proposed enhancements to EDCA or improved scheduling algorithms for HCCA to properly support VBR traffic. However, the cooperation between these functions has only marginally been considered and the solutions vary depending on specific traffic requirements. In this paper we propose a novel approach to address the problem of scheduling VBR traffic streams. Our scheduler, named Overboost, uses HCCA to negotiate a minimum bandwidth and deals with traffic streams that require more bandwidth than the negotiated one by redirecting the excess bandwidth to the EDCA function. An analytical evaluation has been conducted and the results has been corroborated by an extensive set of simulations. They show that the overall scheduler improves the performance with respect to other HCCA schedulers in terms of null rate, throughput, access delay, and queue length

    A Framework for Enhanced QoS Support in IEEE 802.11e Networks

    Get PDF
    IEEE 802.11 based WLANs have became popular, but they can only provide best effort services and so they are poorly suitable for multimedia applications. Recently IEEE 802.11e standard has been proposed to support quality of service. The new standard introduces a so-called Hybrid Coordination Function containing two medium access mechanisms: contention-based channel access and controlled channel access. In this paper we propose a novel framework to better support QoS guarantees for multimedia applications. It comprises QoS Manager, Admission Control, Enhanced Scheduler, Predictor and Feedback System. The scheduler adopted supports real-time applications, variable packet sizes and variable bit rate traffic streams. We show that this framework is suitable to be used by applications requesting Application Level Contracts which will be translated in Resource Level Contracts to the scheduler subsystem. The QoS manager component is able to dynamically manage available resources under different load conditions
    • …
    corecore