12,384 research outputs found

    A Pearson Effective Potential for Monte-Carlo simulation of quantum confinement effects in various MOSFET architectures

    Full text link
    A Pearson Effective Potential model for including quantization effects in the simulation of nanoscale nMOSFETs has been developed. This model, based on a realistic description of the function representing the non zero-size of the electron wave packet, has been used in a Monte-Carlo simulator for bulk, single gate SOI and double-gate SOI devices. In the case of SOI capacitors, the electron density has been computed for a large range of effective field (between 0.1 MV/cm and 1 MV/cm) and for various silicon film thicknesses (between 5 nm and 20 nm). A good agreement with the Schroedinger-Poisson results is obtained both on the total inversion charge and on the electron density profiles. The ability of an Effective Potential approach to accurately reproduce electrostatic quantum confinement effects is clearly demonstrated.Comment: 13 pages, 11 figures, 3 table

    Fast Molecular-Dynamics Simulation for Ferroelectric Thin-Film Capacitors Using a First-Principles Effective Hamiltonian

    Get PDF
    A newly developed fast molecular-dynamics method is applied to BaTiO3 ferroelectric thin-film capacitors with short-circuited electrodes or under applied voltage. The molecular-dynamics simulations based on a first-principles effective Hamiltonian clarify that dead layers (or passive layers) between ferroelectrics and electrodes markedly affect the properties of capacitors, and predict that the system is unable to hop between a uniformly polarized ferroelectric structure and a striped ferroelectric domain structure at low temperatures. Simulations of hysteresis loops of thin-film capacitors are also performed, and their dependence on film thickness, epitaxial constraints, and electrodes are discussed.Comment: 12 figures, 1 table. Submitted to PRB v2->v3: Major changes are underlined in the manuscript. Added new reference

    Stabilizing the forming process in unipolar resistance switching using an improved compliance current limiter

    Full text link
    The high reset current IR in unipolar resistance switching now poses major obstacles to practical applications in memory devices. In particular, the first IR-value after the forming process is so high that the capacitors sometimes do not exhibit reliable unipolar resistance switching. We found that the compliance current Icomp is a critical parameter for reducing IR-values. We therefore introduced an improved, simple, easy to use Icomp-limiter that stabilizes the forming process by drastically decreasing current overflow, in order to precisely control the Icomp- and subsequent IR-values.Comment: 15 pages, 4 figure

    Pade-Type Model Reduction of Second-Order and Higher-Order Linear Dynamical Systems

    Full text link
    A standard approach to reduced-order modeling of higher-order linear dynamical systems is to rewrite the system as an equivalent first-order system and then employ Krylov-subspace techniques for reduced-order modeling of first-order systems. While this approach results in reduced-order models that are characterized as Pade-type or even true Pade approximants of the system's transfer function, in general, these models do not preserve the form of the original higher-order system. In this paper, we present a new approach to reduced-order modeling of higher-order systems based on projections onto suitably partitioned Krylov basis matrices that are obtained by applying Krylov-subspace techniques to an equivalent first-order system. We show that the resulting reduced-order models preserve the form of the original higher-order system. While the resulting reduced-order models are no longer optimal in the Pade sense, we show that they still satisfy a Pade-type approximation property. We also introduce the notion of Hermitian higher-order linear dynamical systems, and we establish an enhanced Pade-type approximation property in the Hermitian case
    • …
    corecore