7 research outputs found

    Cantor-Bernstein implies Excluded Middle

    Get PDF
    We prove in constructive logic that the statement of the Cantor-Bernstein theorem implies excluded middle. This establishes that the Cantor-Bernstein theorem can only be proven assuming the full power of classical logic. The key ingredient is a theorem of Martín Escardó stating that quantification over a particular subset of the Cantor space ℕ → 2, the so-called one-point compactification of ℕ, preserves decidable predicates

    A Constructive and Synthetic Theory of Reducibility: Myhill's Isomorphism Theorem and Post's Problem for Many-one and Truth-table Reducibility in Coq (Full Version)

    Get PDF
    We present a constructive analysis and machine-checked synthetic approach to the theory of one-one, many-one, and truth-table reductions carried out in the Calculus of Inductive Constructions, the type theory underlying the proof assistant Coq. In synthetic computability, one assumes axioms allowing to carry out computability theory with all definitions and proofs purely in terms of functions of the type theory with no mention of a model of computation. Our synthetic proof of Myhill's isomorphism theorem that one-one equivalence yields a computational isomorphism makes a compelling case for synthetic computability due to its simplicity without sacrificing formality. Synthetic computability also clears the lense for constructivisation. We do not assume classical axioms, not even Markov's principle, possible by a careful constructivised definition of simple and hypersimple predicates, still yielding the expected strong results: a simple predicate exists, is enumerable, undecidable, but many-one incomplete (Post's problem for many-one reducibility), and a hypersimple predicate exists, is enumerable, undecidable, but truth-table incomplete (Post's problem for truth-table reducibility)

    Cantor-Bernstein implies Excluded Middle

    No full text
    Update: fixed an error on the applicability of thm 1, added some acks and a refWe prove in constructive logic that the statement of the Cantor-Bernstein theorem implies excluded middle. This establishes that the Cantor-Bernstein theorem can only be proven assuming the full power of classical logic. The key ingredient is a theorem of Martín Escardó stating that quantification over a particular subset of the Cantor space ℕ → 2, the so-called one-point compactification of ℕ, preserves decidable predicates

    Cantor-Bernstein implies Excluded Middle

    No full text
    Update: fixed an error on the applicability of thm 1, added some acks and a refWe prove in constructive logic that the statement of the Cantor-Bernstein theorem implies excluded middle. This establishes that the Cantor-Bernstein theorem can only be proven assuming the full power of classical logic. The key ingredient is a theorem of Martín Escardó stating that quantification over a particular subset of the Cantor space ℕ → 2, the so-called one-point compactification of ℕ, preserves decidable predicates

    Mechanised metamathematics : an investigation of first-order logic and set theory in constructive type theory

    Get PDF
    In this thesis, we investigate several key results in the canon of metamathematics, applying the contemporary perspective of formalisation in constructive type theory and mechanisation in the Coq proof assistant. Concretely, we consider the central completeness, undecidability, and incompleteness theorems of first-order logic as well as properties of the axiom of choice and the continuum hypothesis in axiomatic set theory. Due to their fundamental role in the foundations of mathematics and their technical intricacies, these results have a long tradition in the codification as standard literature and, in more recent investigations, increasingly serve as a benchmark for computer mechanisation. With the present thesis, we continue this tradition by uniformly analysing the aforementioned cornerstones of metamathematics in the formal framework of constructive type theory. This programme offers novel insights into the constructive content of completeness, a synthetic approach to undecidability and incompleteness that largely eliminates the notorious tedium obscuring the essence of their proofs, as well as natural representations of set theory in the form of a second-order axiomatisation and of a fully type-theoretic account. The mechanisation concerning first-order logic is organised as a comprehensive Coq library open to usage and contribution by external users.In dieser Doktorarbeit werden einige Schlüsselergebnisse aus dem Kanon der Metamathematik untersucht, unter Verwendung der zeitgenössischen Perspektive von Formalisierung in konstruktiver Typtheorie und Mechanisierung mit Hilfe des Beweisassistenten Coq. Konkret werden die zentralen Vollständigkeits-, Unentscheidbarkeits- und Unvollständigkeitsergebnisse der Logik erster Ordnung sowie Eigenschaften des Auswahlaxioms und der Kontinuumshypothese in axiomatischer Mengenlehre betrachtet. Aufgrund ihrer fundamentalen Rolle in der Fundierung der Mathematik und ihrer technischen Schwierigkeiten, besitzen diese Ergebnisse eine lange Tradition der Kodifizierung als Standardliteratur und, besonders in jüngeren Untersuchungen, eine zunehmende Bedeutung als Maßstab für Mechanisierung mit Computern. Mit der vorliegenden Doktorarbeit wird diese Tradition fortgeführt, indem die zuvorgenannten Grundpfeiler der Methamatematik uniform im formalen Rahmen der konstruktiven Typtheorie analysiert werden. Dieses Programm ermöglicht neue Einsichten in den konstruktiven Gehalt von Vollständigkeit, einen synthetischen Ansatz für Unentscheidbarkeit und Unvollständigkeit, der großteils den berüchtigten, die Essenz der Beweise verdeckenden, technischen Aufwand eliminiert, sowie natürliche Repräsentationen von Mengentheorie in Form einer Axiomatisierung zweiter Ordnung und einer vollkommen typtheoretischen Darstellung. Die Mechanisierung zur Logik erster Ordnung ist als eine umfassende Coq-Bibliothek organisiert, die offen für Nutzung und Beiträge externer Anwender ist

    Computability in constructive type theory

    Get PDF
    We give a formalised and machine-checked account of computability theory in the Calculus of Inductive Constructions (CIC), the constructive type theory underlying the Coq proof assistant. We first develop synthetic computability theory, pioneered by Richman, Bridges, and Bauer, where one treats all functions as computable, eliminating the need for a model of computation. We assume a novel parametric axiom for synthetic computability and give proofs of results like Rice’s theorem, the Myhill isomorphism theorem, and the existence of Post’s simple and hypersimple predicates relying on no other axioms such as Markov’s principle or choice axioms. As a second step, we introduce models of computation. We give a concise overview of definitions of various standard models and contribute machine-checked simulation proofs, posing a non-trivial engineering effort. We identify a notion of synthetic undecidability relative to a fixed halting problem, allowing axiom-free machine-checked proofs of undecidability. We contribute such undecidability proofs for the historical foundational problems of computability theory which require the identification of invariants left out in the literature and now form the basis of the Coq Library of Undecidability Proofs. We then identify the weak call-by-value λ-calculus L as sweet spot for programming in a model of computation. We introduce a certifying extraction framework and analyse an axiom stating that every function of type ℕ → ℕ is L-computable.Wir behandeln eine formalisierte und maschinengeprüfte Betrachtung von Berechenbarkeitstheorie im Calculus of Inductive Constructions (CIC), der konstruktiven Typtheorie die dem Beweisassistenten Coq zugrunde liegt. Wir entwickeln erst synthetische Berechenbarkeitstheorie, vorbereitet durch die Arbeit von Richman, Bridges und Bauer, wobei alle Funktionen als berechenbar behandelt werden, ohne Notwendigkeit eines Berechnungsmodells. Wir nehmen ein neues, parametrisches Axiom für synthetische Berechenbarkeit an und beweisen Resultate wie das Theorem von Rice, das Isomorphismus Theorem von Myhill und die Existenz von Post’s simplen und hypersimplen Prädikaten ohne Annahme von anderen Axiomen wie Markov’s Prinzip oder Auswahlaxiomen. Als zweiten Schritt führen wir Berechnungsmodelle ein. Wir geben einen kompakten Überblick über die Definition von verschiedenen Berechnungsmodellen und erklären maschinengeprüfte Simulationsbeweise zwischen diesen Modellen, welche einen hohen Konstruktionsaufwand beinhalten. Wir identifizieren einen Begriff von synthetischer Unentscheidbarkeit relativ zu einem fixierten Halteproblem welcher axiomenfreie maschinengeprüfte Unentscheidbarkeitsbeweise erlaubt. Wir erklären solche Beweise für die historisch grundlegenden Probleme der Berechenbarkeitstheorie, die das Identifizieren von Invarianten die normalerweise in der Literatur ausgelassen werden benötigen und nun die Basis der Coq Library of Undecidability Proofs bilden. Wir identifizieren dann den call-by-value λ-Kalkül L als sweet spot für die Programmierung in einem Berechnungsmodell. Wir führen ein zertifizierendes Extraktionsframework ein und analysieren ein Axiom welches postuliert dass jede Funktion vom Typ N→N L-berechenbar ist
    corecore