20,259 research outputs found
Autophagy-deficient breast cancer shows early tumor recurrence and escape from dormancy
Breast cancer patients who initially respond to cancer therapies often succumb to distant recurrence of the disease. It is not clear why people with the same type of breast cancer respond to treatments differently; some escape from dormancy and relapse earlier than others. In addition, some tumor clones respond to immunotherapy while others do not. We investigated how autophagy plays a role in accelerating or delaying recurrence of neu-overexpressing mouse mammary carcinoma (MMC) following adriamycin (ADR) treatment, and in affecting response to immunotherapy. We explored two strategies: 1) transient blockade of autophagy with chloroquine (CQ), which blocks fusion of autophagosomes and lysosomes during ADR treatment, and 2) permanent inhibition of autophagy by a stable knockdown of ATG5 (ATG5KD), which inhibits the formation of autophagosomes in MMC during and after ADR treatment. We found that while CQ prolonged tumor dormancy, but that stable knockdown of autophagy resulted in early escape from dormancy and recurrence. Interestingly, ATG5KD MMC contained an increased frequency of ADR-induced polyploid-like cells and rendered MMC resistant to immunotherapy. On the other hand, a transient blockade of autophagy did not affect the sensitivity of MMC to immunotherapy. Our observations suggest that while chemotherapy-induced autophagy may facilitate tumor relapse, cell-intrinsic autophagy delays tumor relapse, in part, by inhibiting the formation of polyploid-like tumor dormancy
TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling
In patients, non-proliferative disseminated tumour cells (DTCs) can persist in the bone marrow (BM) while other organs (such as lung) present growing metastasis. This suggested that the BM might be a metastasis ‘restrictive soil’ by encoding dormancy-inducing cues in DTCs. Here we show in a head and neck squamous cell carcinoma (HNSCC) model that strong and specific transforming growth factor-β2 (TGF-β2) signalling in the BM activates the MAPK p38α/β, inducing an (ERK/p38)low signalling ratio. This results in induction of DEC2/SHARP1 and p27, downregulation of cyclin-dependent kinase 4 (CDK4) and dormancy of malignant DTCs. TGF-β2-induced dormancy required TGF-β receptor-I (TGF-β-RI), TGF-β-RIII and SMAD1/5 activation to induce p27. In lungs, a metastasis ‘permissive soil’ with low TGF-β2 levels, DTC dormancy was short-lived and followed by metastatic growth. Importantly, systemic inhibition of TGF-β-RI or p38α/β activities awakened dormant DTCs, fuelling multi-organ metastasis. Our work reveals a ‘seed and soil’ mechanism where TGF-β2 and TGF-β-RIII signalling through p38α/β regulates DTC dormancy and defines restrictive (BM) and permissive (lung) microenvironments for HNSCC metastasis.Fil: Bragado, Paloma. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Estrada, Yeriel. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Parikh, Falguni. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Krause, Sarah. University Hospital of Schleswig-Holstein; AlemaniaFil: Capobianco, Carla Sabrina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Farina, Hernán Gabriel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schewe, Denis M.. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Aguirre Ghiso, Julio A.. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados Unido
Surgery Triggers Outgrowth of Latent Distant Disease in Breast Cancer: An Inconvenient Truth?
We review our work over the past 14 years that began when we were first confronted with bimodal relapse patterns in two breast cancer databases from different countries. These data were unexplainable with the accepted continuous tumor growth paradigm. To explain these data, we proposed that metastatic breast cancer growth commonly includes periods of temporary dormancy at both the single cell phase and the avascular micrometastasis phase. We also suggested that surgery to remove the primary tumor often terminates dormancy resulting in accelerated relapses. These iatrogenic events are apparently very common in that over half of all metastatic relapses progress in that manner. Assuming this is true, there should be ample and clear evidence in clinical data. We review here the breast cancer paradigm from a variety of historical, clinical, and scientific perspectives and consider how dormancy and surgery-driven escape from dormancy would be observed and what this would mean. Dormancy can be identified in these diverse data but most conspicuous is the sudden synchronized escape from dormancy following primary surgery. On the basis of our findings, we suggest a new paradigm for early stage breast cancer. We also suggest a new treatment that is meant to stabilize and preserve dormancy rather than attempt to kill all cancer cells as is the present strategy
Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells
Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25+ NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25+ NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy
Cancer therapeutic potential of combinatorial immuno- and vaso-modulatory interventions
Currently, most of the basic mechanisms governing tumor-immune system
interactions, in combination with modulations of tumor-associated vasculature,
are far from being completely understood. Here, we propose a mathematical model
of vascularized tumor growth, where the main novelty is the modeling of the
interplay between functional tumor vasculature and effector cell recruitment
dynamics. Parameters are calibrated on the basis of different in vivo
immunocompromised Rag1-/- and wild-type (WT) BALB/c murine tumor growth
experiments. The model analysis supports that tumor vasculature normalization
can be a plausible and effective strategy to treat cancer when combined with
appropriate immuno-stimulations. We find that improved levels of functional
tumor vasculature, potentially mediated by normalization or stress alleviation
strategies, can provide beneficial outcomes in terms of tumor burden reduction
and growth control. Normalization of tumor blood vessels opens a therapeutic
window of opportunity to augment the antitumor immune responses, as well as to
reduce the intratumoral immunosuppression and induced-hypoxia due to vascular
abnormalities. The potential success of normalizing tumor-associated
vasculature closely depends on the effector cell recruitment dynamics and tumor
sizes. Furthermore, an arbitrary increase of initial effector cell
concentration does not necessarily imply a better tumor control. We evidence
the existence of an optimal concentration range of effector cells for tumor
shrinkage. Based on these findings, we suggest a theory-driven therapeutic
proposal that optimally combines immuno- and vaso-modulatory interventions
Metastasis dormancy in estrogen receptor-positive breast cancer.
About 20% to 40% of patients with breast cancer eventually develop recurrences in distant organs, which are often not detected until years to decades after the primary tumor diagnosis. This phenomenon is especially pronounced in estrogen receptor-positive (ER(+)) breast cancer, suggesting that ER(+) cancer cells may stay dormant for a protracted period of time, despite adjuvant therapies. Multiple mechanisms have been proposed to explain how cancer cells survive and remain in dormancy, and how they become reactivated and exit dormancy. These mechanisms include angiogenic switch, immunosurveillance, and interaction with extracellular matrix and stromal cells. How to eradicate or suppress these dormant cancer cells remains a major clinical issue because of the lack of knowledge about the biologic and clinical nature of these cells. Herein, we review the clinical manifestation of metastasis dormancy in ER(+) tumors, the current biologic insights regarding tumor dormancy obtained from various experimental models, and the clinical challenges to predict, detect, and treat dormant metastases. We also discuss future research directions toward a better understanding of the biologic mechanisms and clinical management of ER(+) dormant metastasis
The Function of NM23-H1/NME1 and Its Homologs in Major Processes Linked to Metastasis
International audienc
The acceleration of metastases after tumor removal and the paradoxical phenomenon of concomitant tumor resistance
Although surgical extirpation of tumors is usually clinically recommended, tumor removal may entail an undesired side effect: the risk of accelerating the growth of metastases. This effect may account for the relatively modest survival benefits observed when surgery is accomplished after tumor cells have already disseminated to distant anatomical sites even when tumor removal is combined with chemotherapy or immunotherapy. Although different mechanisms could contribute to the enhancement of residual tumor growth after tumor removal, probably a main effect is associated with the withdrawing of an inhibitory effect generated, by certain circumstances, by the primary tumor on its own metastases. This inhibitory effect is a particular case of a more general and paradoxical phenomenon known as concomitant tumor resistance (CR) in which a tumor-bearing host inhibits or retards the growth of secondary tumor implants despite the fact that the primary tumor grows progressively. In this essay we especially focus on the last investigations of our laboratory concerningthe importance of tyrosine isomers as mediators of the phenomenon of CR and on their capacity to inhibit established metastases. Taking into account that metastases are considered the main problem in cancer pathology, our investigations aimed to elucidate the molecular basis of the phenomenon of CR might stimulate the design of new and less harmful means of managing malignant diseases, especially by controlling the growth of metastases after the removal of a primary tumor, or after other injuries or stressors that have been claimed to promote the escape of metastases from dormancy.Fil: Montagna, Daniela Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Chiarella, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Meiss, Roberto P.. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Ruggiero, Raul Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentin
- …
