
Metastasis Dormancy in Estrogen Receptor–Positive
Breast Cancer

Xiang H.-F. Zhang1,2,3,5, Mario Giuliano1,6, Meghana V. Trivedi4, Rachel Schiff1,2,3, and C. Kent Osborne1,2,3

Abstract
About 20% to 40% of patients with breast cancer eventually develop recurrences in distant organs, which

are often not detected until years to decades after the primary tumor diagnosis. This phenomenon is

especially pronounced in estrogen receptor–positive (ERþ) breast cancer, suggesting that ERþ cancer cells

may stay dormant for a protracted period of time, despite adjuvant therapies. Multiple mechanisms have

been proposed to explain how cancer cells survive and remain in dormancy, and how they become

reactivated and exit dormancy. These mechanisms include angiogenic switch, immunosurveillance, and

interaction with extracellular matrix and stromal cells. How to eradicate or suppress these dormant cancer

cells remains a major clinical issue because of the lack of knowledge about the biologic and clinical nature

of these cells.Herein,we review the clinicalmanifestationofmetastasis dormancy inERþ tumors, the current

biologic insights regarding tumor dormancy obtained from various experimental models, and the clinical

challenges to predict, detect, and treat dormantmetastases.We alsodiscuss future researchdirections toward

a better understanding of the biologic mechanisms and clinical management of ERþ dormant metastasis.

Clin Cancer Res; 19(23); 6389–97. !2013 AACR.

Introduction
Nearly all breast cancer–related deaths are caused by

metastases rather than the primary tumor. Different sub-
types of breast cancer exhibit distinct metastasis behaviors
in terms of the temporal kinetics and anatomic sites. Estro-
gen receptor–positive (ERþ) breast cancer, in particular,
predominantly recurs in bone, often years to occasionally
decades after the diagnosis of the primary tumor. This
protracted latency suggests a dormant stage of metastasis
progression wherein cancer cells either stay quiescent or
proliferate very slowly. Although late recurrences (>5 years)
occur in more than 50% of patients, our knowledge about
tumor dormancy is extremely limited. This is largely due to
the fact that dormant cancer cells are rare and difficult to
detect and isolate from clinical specimens. Moreover, ideal
animalmodels that can fully recapitulate the natural history
of dormant tumors are also lacking. Despite these difficul-
ties, several hypotheses have been proposed as major
mechanisms underlying tumor dormancy. The common
theme of thesemechanisms is the cross-talk between tumor
cells and the microenvironment they encounter. The pro-

cesses and factors that have been implicated in dormancy
include angiogenesis (1, 2), immunosurveillance (3–5),
and a wide variety of microenvironmental cues such as
extracellular matrix (ECM), growth factors, and cytokines
(Fig. 1). Although illuminating, very few, if any, studies have
been conducted using ERþbreast cancermodels, despite the
fact that metastasis dormancy is most common in this
tumor subtype. In this review, we describe the clinical
manifestation of ERþ dormant metastasis. We then discuss
the urgent need, possible solutions, and the conceptual
challenges faced by basic and clinical scientists who want
to study metastasis dormancy in ERþ breast cancer. Several
other excellent reviews of tumor dormancy are also recom-
mended (2, 4–9).

Clinical manifestation of dormancy of ERþ breast
cancer

Tumor dormancy is defined as clinically undetectable
microscopic metastases that eventually progress to overt
cancer after a long period of time. In breast cancer, metas-
tases usually become evident asynchronously with the
primary tumor, and they show variable lengths of time to
become clinically apparent. This lag time depends to some
extent on the initial tumor volume or stage at first diagnosis.
At one end of the spectrum, neglected locally advanced
cancers are often diagnosed withmetastases already evident
or appearing soon. At the other end,metastases of low-stage
breast cancer may occur many years after the diagnosis.
Other factors also relate to the time until metastases are
identified. Such factors as the rate of proliferation or the
ER status of the tumor are also related to the time to distant
recurrence. Indeed, late recurrences, sometimes decades
after the initial primary diagnosis, indicating a long
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dormant period, present a significant clinical challenge
mainly for ERþ breast cancer. More than half of the recur-
rences of ERþ tumors occur 5 years or longer after diagnosis
and surgical removal of the primary tumor, and some
patients suffer recurrence after more than 20 years (10–
12). This is in sharp contrast to ER" tumors, for which the
recurrence rate peaks at around 2 years but diminishes to a
low rate after 5 years (13). Current prognosticmarkers often
focus on and are reasonably good at predicting early recur-
rences within 5 years (14–17), but the risk of late recur-
rences remains poorly predictable. Is late recurrence merely
a reflectionof very slowlyproliferating ERþ cancer cells lying
in distant sites or due to cancer cells actually entering a
period of total dormancy in which they stop proliferating
until they are activated to grow again by some as yet
unknown stimulus. We know that many patients with early
breast cancer harbormicrometastases in their bonemarrow.
Although the presence of these cells predicts a slightly worse
prognosis, the majority of the patients with these dissem-
inated cells never suffer a recurrence, at least within the time
of follow-up on the studies (7, 18).

Systemic therapy given topatientswith early breast cancer
after surgery in an attempt to eradicate micrometastases
(adjuvant therapy) could also influence the time it takes for
a patient to show a recurrence by slowing cell proliferation
or by killing the majority but not all of the metastatic cells,
thereby delaying their clinical appearance. Adjuvant che-
motherapy is effective in reducing recurrences within the
first 5 years but ineffective in preventing late recurrences
between 5 and 15 years (1). These data suggest that late
recurrences arise from residual disease that is treatment
resistant.

Further insights may be obtained from studies of adju-
vant endocrine therapies in patientswith ERþ tumors. These
studies have shown that longer and longer durations of
treatment are better at reducing recurrence and prolonging
survival than shorter durations. Early clinical trials indicat-
ed that 5 years of tamoxifen treatment was more effective
than 1 or 2 years (1). Recent studies of prolonging adjuvant
tamoxifen from5 to 10 years show a reduction in recurrence
and death between years 10 and 15, suggesting that longer
treatment continued to suppress proliferation of microme-
tastases still viable after just 5 years of treatment (see Table 1
and references therein). These results indicate that inhibi-
tion of ER signaling may suppress the exit of cancer cells
fromdormancy or growth inhibition butmay not kill them.
Whether ERþ micrometastases are ever totally eradicated
by treatment will require very long follow-up of patients to
ascertain.

Biologic Insights into ERþ Metastasis Dormancy
Biologic models of metastasis dormancy

Before this discussion, it is necessary to define the key
parameters of an experimental model for ERþ metastasis
dormancy. Suchmodels need to have several key features: (i)
recapitulation of several characteristics of human ERþ

tumors, including estrogen dependence, growth inhibition
by antiestrogen strategies, as well as the potential to develop
resistance to these treatments; (ii) recapitulation of the
natural progression of ERþ tumors, including tumorigenesis,
local invasion and intravasation, and the temporal kinetics
and anatomical site of metastasis (predominantly bone);
and (iii) opportunities to investigate the roles of major
cell types that may be involved in dormancy. In subsequent
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Figure 1. Hypothetical
mechanisms underlying
metastasis dormancy. During
dormancy, metastatic cancer
cells may undergo very slow
proliferation ("slow growth"), a
balanced turnover due to equal
rates of cell deaths and
proliferation ("balanced
turnover"), or G0–G1 arrest
("cellular quiescence"). The
termination of dormancy, or the
detection of metastases, may
result from the accumulation of
tumor mass that eventually
exceeds detection limit, the
onset of successful angiogenesis
("angiogenic switch"), evasion of
immunosurveillance, and/or the
initiation of interaction with
certain ECM or stromal cells
(e.g., tenascin C and VCAM-1).

CCRFOCUS

Clin Cancer Res; 19(23) December 1, 2013 Clinical Cancer Research6390

on January 25, 2016. © 2013 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

http://clincancerres.aacrjournals.org/


paragraphs, we go over the major models and techniques
that have been used in breast cancer and point out their
strengths and weaknesses for dormancy research. It needs to
be noted here that although the abovementioned properties
are highly desirable, models lacking these features may still
generate useful information. For instance, late recurrences
are not exclusively ERþ, and the mechanistic insights
obtained from ER" models may also be relevant to ERþ

diseases.
The most widely used breast cancer models are human

breast cancer cell lines that are largely derived from pleural
effusions of patients with advanced breast cancer. Recent
genomic studies support the validity of cell lines as breast
cancer models by showing the common genomic/gene
expression profiles shared between primary tumors and
cohorts of cell lines (19). In particular, ERþ breast cancer
cell lines have been essential for the elucidation of steroid
hormone–stimulated signaling and resistance mechanisms
of antihormonal therapies (20). When transplanted into
themammary glands of immunodeficient mice, ERþ cancer
cells can generate orthotopic xenograft tumors, which are
typically dependent on estradiol supplementation. Howev-
er, such tumors rarely give rise to spontaneous metastases
during the relatively short lifespan of the mouse and there-
fore fall short of serving as models of metastasis dormancy.
As an alternative approach, direct introduction of ERþ

cancer cells via intracardiac injectiondelivers them through-
out the entire arterial circulation and can result in coloni-
zation in multiple organs, including bone. Other limita-
tions of xenograft models include the lack of an intact
immune system in immunodeficient mice, the use of
already fully transformed and metastatic cancer cells, and
the absence of potential influence from the primary tumor
(21). Despite these caveats, important discoveries pertinent
to metastasis dormancy were made using this approach. In
one example, a subpopulation of MDA-MB-231 cells that

outgrew after a long dormancy in animals was compared
with the parental population. VCAM1 was identified as a
key molecule that could serve as a chemoattractant for
osteoclast precursors, which in turn trigger the proliferation
and exit fromdormancy of cancer cells (Fig. 2A; ref. 22). The
role of VCAM1 was verified in several other models, includ-
ing MCF-7 cells (22). Therefore, the observation may be
relevant to ERþ breast cancer.

Murine cell lines derived from mouse mammary
tumors have also been widely used to investigate breast
cancer. As opposed to xenograft models, these models
provide the advantage of using immunocompetent syn-
geneic mice. Considering the growing evidence for the
role of immune cells in tumor progression (23), this is a
potential major advantage for such models. The disad-
vantage of the vast majority of murine cell line models is
the lack of estrogen dependence. Nevertheless, important
progress has been made in understanding metastasis
dormancy using murine cell lines. One recent study using
this model revealed the bone morphogenetic protein
(BMP) regulator Coco as a mediator driving the out-
growth of micrometastases into macrometastases in lungs
(Fig. 2B; ref. 24). Another study identified Irf7 as a
suppressor of spontaneous bone metastases, apparently
by regulating the adaptive immune system (25). How
relevant these findings are to ERþ human breast cancer
remains to be tested.

Transgenic and other genetically engineered mouse
models (GEMM) have also been developed to enhance
our understanding of mechanisms driving tumor prog-
ression and metastases. These models offer the obvious
strengths of capturing the full course of tumor progres-
sion from a premalignant stage to the terminal metastatic
stage. They also preserve the native interactions between
cancer cells and their microenvironment at every stage.
Like murine cell lines, however, GEMMs are rarely ERþ

Table 1. Clinical trials of extended hormonal therapies

Clinical trial
Patient
accrual Design Results Reference

NCIC-MA17 5,187 Tamoxifen 5 y þ letrozole 5 y vs.
tamoxifen 5 y þ placebo

Extended letrozole treatment prolonged
DFS [HR ¼ 0.58 (0.45–0.76), P < 0.001]
and distant DFS [HR ¼ 0.60 (0.43–0.84),
P < 0.002]

(60)

ATLAS 12,894 Tamoxifen 10 y vs. stopping at 5 y 10-y treatment significantly reduced recurrences
[HR ¼ 0.75 (0.62–0.90), P ¼ 0.003] and mortality
[HR ¼ 0.71 (0.58–0.88), P ¼ 0.001]

(61)

NSABP B-33 1,598 Tamoxifen 5 y þ exemestane 5 y vs.
tamoxifen 5 y þ placebo

Extended exemestane treatment prolonged DFS
with a borderline significance (2% absolute
improvement, P ¼ 0.07)

(62)

ABCSG 6a 856 Tamoxifen 5 y þ anastrozole 3 y vs.
tamoxifen 5 y þ placebo

Extended anastrozole treatment reduces risk
of recurrences [HR ¼ 0.62 (0.40–0.96),
P ¼ 0.031]

(63)

Abbreviation: DFS, disease-free survival.

ERþ Metastasis Dormancy
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and estrogen dependent and, therefore, cannot be directly
used for studies of ERþ breast cancer dormancy. More-
over, with few exceptions, GEMMs, unlike ERþ breast
cancers, predominantly metastasize to lungs but not
bones within the lifespan of the tumor-bearing mice
(26). Despite these weaknesses, several groups have cre-
ated elegant models that exhibit relevant features, includ-
ing local and metastasis dormancy. In a series of studies,
deinduction of an inducible MMTV-Neu oncogene
resulted in tumor regression. The regressed tumor, how-
ever, still contains viable tumor cells that remain dormant
but can be activated by several processes and factors,
including expression of Snail, a driver of epithelial–mes-
enchymal transition (EMT). This finding provided a con-
nection between dormancy and a cellular program that
was later linked to traits of cancer progenitor (stem) cells
(27, 28). A more recent study showed that Ron receptor
kinase suppresses T cells and promotes the outgrowth of
micrometastases in lungs, highlighting the important role
of the immune system in tumor dormancy (29). Again,
whether these findings can be applied to human ERþ

tumors is not known.
In addition to these models, patient-derived primary

xenografts generated by directly transplanting pieces of
surgically removed tumors to immunocompromised mice
preserve histopathologic features, genomic and transcrip-
tomic similarities, and pharmacologic responses similar to
the original tumors in the patient. A minority of these
primary xenografts maintain ER expression and ER depen-
dence. Importantly, many such xenografts spontaneously
spread to the bone marrow and therefore provide relevant

sources of quiescent disseminated tumor cells (DTC;
refs. 30–32).

In summary, although significant progress has beenmade
in our understanding of metastasis dormancy, individual
biologic models cannot cover every essence of this process,
especially for ERþ breast tumors. To overcome this barrier,
researchers may need to combine different types of models
and create novel ones. Like many other biologic questions,
the establishment of better models may benefit from our
deeper understanding of the objectives. One possible solu-
tion is to divide the dormancy process into separate steps,
conquer each of them separately, and finally synthesize our
knowledge to construct an ideal experimental model. In the
next section, we divide the problem of dormancy into a few
conceptual components, summarize our current under-
standing of each, and propose future directions.

Biologic mechanisms underlying metastasis dormancy
We envision that the dormancy process is composed

conceptually of several components, including cell survival
mechanisms that constantly sustain the viability of cancer
cells, self-renewalmechanisms thatmaintain tumorigenesis
capacity, and activation/suppression mechanisms that
restore/prevent aggressive outgrowth. Very importantly, all
of thesemechanisms are likely to involve cross-talk between
dormant cells and their microenvironment. We focus on
bone as the host tissue of dormant cancer cells because it is
themost frequent metastatic site of ERþ breast cancer and is
the major reservoir of DTCs.

Upon arrival in the bone marrow, cancer cells need to
extravasate from the blood circulation and enter the area
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Figure 2. The roles of Coco
and VCAM-1 in metastasis
dormancy. A, dormant cancer
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acquire the ability to secrete
soluble VCAM-1, which
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gradient and chemoattractant
preosteoclasts. The interaction
between cancer cells and
preosteoblasts will accelerate
the differentiation of the latter
into activated osteoclasts
(multinucleated cells depicted in
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progression toward overt
bone metastases. B, Coco
antagonizes BMP signaling in
the lung microenvironment and
fosters the self-renewal and
proliferation of dormant
cancer cells.
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close to the interface between the bone marrow and bone
matrix. The extravasation process is not expected to be a
major hurdle for cancer cells because of the sinusoid struc-
tures in the bone marrow, which are extensively fenestrated
with 1-mm-wide pores. The cancer cells need to exploit the
foreign microenvironment for survival. This can be viewed
as a Darwinian selection process during which only a small
fractionwill succeed.Ourprevious study suggested that Src is
a survival mediator specifically in bone colonization in that
it potentiates PI3K/AKT activation in cancer cells byCXCL12
and IGFI, both of which abound in the bone marrow
microenvironment. Although the cell models we used were
ER", it is noteworthy thatmost ERþ tumors also exhibit high
Src activity, in part due to the interaction between ER and Src
(33). Thus, our results provide one possible mechanism
underlying the survival of cancer cells in bones. This mech-
anism links the intrinsic survival machinery to unique
features of the bone microenvironment. Further investiga-
tions are needed to confirm this mechanism or to discover
additional ones because the survival mediators represent
ideal therapeutic targets to permanently eradicate dormant
cancer cells. As a result, short-term intervention could gen-
erate long-lasting effects, thereby alleviating concerns about
side effects and prohibitive cost of treatment.
It has long been suspected that dormant cells are also

tumor-initiating cells or cancer stem cells, although direct
evidence is still lacking. Conceptually, if a dormant cell
maintains the potential to eventually reinitiate a tumor, it
should be a tumor-initiating cell by definition. However,
are dormant tumor-initiating cells that ultimately initiate
bone metastases the same population of tumor-initiating
cell that maintains the tumorigenesis potential of the pri-
mary tumor? Many recent studies suggest that the potential
of initiating a tumor can be dynamically acquired or lost
and therefore represents a cellular status rather than a
cellular entity (34–36). In this scenario, the tumor-initiat-
ing potential needs to be suppressed to ensure dormancy or
activated to exit dormancy. A recent study revealed that
BMP2 signaling in the lung microenvironment inhibits
tumor-initiating potential. The acquisition of Coco expres-
sion terminatesmetastasis dormancy anddrives lungmetas-
tasis outgrowth (Fig. 2B; ref. 24). In another study, cancer
cells disseminated to lungs were shown to induce the
expression of Periostin (POSTN) in fibroblasts, which recip-
rocally increases WNT signaling and promotes tumor-ini-
tiating potential and tumor outgrowth (37). Similarly, lung
micrometastases can also produce tenascin C (TNC), an
ECM protein, that facilitates maintenance of tumor initiat-
ing potential by activating WNT and Notch pathways in
cancer cells (38). The above-mentioned molecules and the
underlying pathways may represent therapeutic targets to
diminish tumor-initiating potential of dormant cancer
cells. However, whether similar mechanisms are operative
in bone and for ERþ breast cancer cells remains unknown.
The termination of dormancy not only needs the resto-

ration of tumor-initiating potential but also requires strong
proliferative signals, which may already be in place but
actively suppressed by the host (e.g., immunosurveillance)

or need tobe acquired de novo. Several recent studies provide
interesting examples of this process. In one study, dormant
cancer cells are proposed to activate osteoclast progenitors
via soluble VCAM1 as a nonconventional chemoattractant.
The activated osteoclasts in turn initiate the osteolytic
vicious cycle and trigger the outgrowth of cancer cells (Fig.
2A; ref. 22). In a second study, the authors showed that
cancer cells in lungs need to form filopodia-like protrusions
with ECM to grow out. The formation of these structures
activates the integrin/FAK/ERK signaling cascades and
drives cancer cell proliferation (39). The perivascular niche
may also play a role in regulating the maintenance and exit
of dormancy. Ghajar and colleagues showed that endothe-
lial cells secrete thrombospondin 1 to suppress cancer cell
proliferation, and this suppression is lost in sprouting
neovasculature, which leads to outgrowth (40). Again,
whether and how these processes are similar in ERþ tumors
in bones after long-term dormancy remains to be
investigated.

In summary, although insights have been gained into the
dormancy process, it remains unexplored whether these
discoveries can be applied to ERþ models under a dormant
setting in bone. A key piece of information missing in our
understanding of ERþ metastasis is the biology of bone
micrometastases. It is well established that in the advanced
stage, bonemetastases are typically osteolytic and driven by
a vicious cycle between cancer cells and osteoclasts. How-
ever, it is also evident that many patients do not exhibit
symptomsof osteolysis formany years before bone relapses.
How cancer cells exist as microscopic lesions and how they
crosstalk with the bone microenvironment in the preosteo-
lytic stage remains completely elusive. DTCs may represent
cancer cells in this stage, but direct evidence is lacking.
Several questions need to be addressed regarding preos-
teolytic micrometastases (Fig. 3). First, do they have
preferential microenvironmental niches in bone and
bone marrow? Some recent studies using prostate cancer
models suggest that cancer cells tend to lodge in the same
niches as hematopoietic stem cells (HSC; ref. 41). How-
ever, the definition of the HSC niche is itself a biologic
question under intensive study. Second, are these micro-
metastases truly quiescent or are they slowly proliferating
(Fig. 1)? Third, are these micrometastases dormant or
indolent because they are enriched with tumor-initiating
cells or because they are restricted by the bone microen-
vironment. Finally, are there biologic pathways that spe-
cifically mediate their survival and proliferation? The
answers to these questions will shed light on the dor-
mancy behavior of ERþ breast cancer, and they warrant
intensive investigation.

Clinical Challenges of ERþ Dormancy
Detection of micrometastases

The current detection ofmetastases in the clinic primarily
relies on the appearance of symptoms caused by macro-
metastases. As mentioned above, bone metastases cause
osteolysis in their advanced stage, which is usually mani-
fested by skeletal-related events such as bone pain, fractures,

ERþ Metastasis Dormancy
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and hypercalcemia. At the time of diagnosis, the vicious
cycle between cancer cells and osteoclasts has already
started, and the dormancy stage has been terminated. Some
metastases are asymptomatic and are detected by tests such
as X-rays, computed tomography (CT), or positron emis-
sion tomography with fluorodeoxyglucose (FDG-PET).
However, microscopic metastases composed of only a few
cancer cells are below the detection threshold of these
technologies. Thus, we have not been able to identify
micrometastases in the clinic unless they are discovered
"accidently" in a patient undergoing a bonemarrow biopsy
for research or an unrelated purpose. Wemay be approach-
ing the ability to detect submillimeter or even single-cell
metastases owing to the development of several new tech-
nologies. For instance, high-resolution hyperpolarized 3He
MRI candetectmicrometastases that are 300mmindiameter
in preclinical models (42). Circulating tumor cells (CTC)
and tumor DNA in patient peripheral blood may represent
useful surrogates of micrometastases in distant organs.
Recently, therapeutic and biologic insights have been
obtained by monitoring and characterizing CTCs (43) and
their released DNAs (44) in small cohorts of patients
Molecular characterization of CTCs from the same blood
sample has shown heterogeneous subpopulations with
different transcriptional profiles and hormone receptor
phenotypes (43, 45–47). Heterogeneity in ER expression
of CTCs coexisting within a single blood drawwas observed
in our study (Fig. 4). The exact relation between CTCs and
dormant micrometastases remains to be experimentally
elucidated. DTCs in the bonemarrow have been considered
as dormant bone metastases and mark a poorer prognosis
(7, 48, 49). However, the correlation between these cells

and bone relapses has not been firmly established. In
some studies, patients with detectable DTCs and those
with CTCs only partially overlap and exhibit different
prognoses (50–52). Further investigations are needed to
provide a deep understanding of the biologic nature of
DTCs and CTCs and to answer the question of whether
they represent or can be used as surrogates for dormant
micrometastases.

Prediction of late recurrences
Early relapses within 5 years can be predicted with rea-

sonable accuracy using histopathologic features and/or
gene expression profiles. Current successful predictors share
the commonality of having some components reflecting
proliferation, suggesting that early relapses may be caused
by the rapid proliferation of residual tumor cells (14–17).
Late recurrences beyond 5 years, however, apparently are
not associated with proliferation markers and have been
difficult to predict (53). The ratio of two individualmRNAs,
HOXB13/IL17BR, has been shown to be a prognostic factor
in ERþ and node-negative patients, which is the major
population giving rise to late recurrences (54, 55). Gene
expression signatures that are retrospectively associated
with late recurrences have recently been derived by com-
paring the gene expression profiles of primary tumors of
early versus late recurrences (56, 57), or using dormant
cancer cells in experimental systems (58). Whether these
signatures can prospectively predict late recurrences
remains to be tested. The difficulty of predicting recurrences
beyond 5 yearsmay be anticipated for biologic reasons. The
use of information derived from the primary tumor to
predict recurrences is based on the assumption that the
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traits driving recurrences are encoded in the bulk of primary
tumors. While this assumption has been validated for early
recurrences in numerous studies, it might need to be recon-
sidered in the case of late recurrences. The fact that dormant
micrometastases stay in distant organs for many years
suggests a long evolutionary process of these cells after their
departure from the primary tumor. During this time, inde-
pendent genetic and epigenetic traitsmay arise anddrive the
recurrences that will not be present in the original primary
tumors (59). Thus, it may be necessary to examine the
metastases from patients with late relapses and compare
them with the primary tumor and early metastases to
decipher the genetic or epigenetic alterations that lead to
late recurrences. Other factors may also confound the
prediction of late recurrences. Some late recurrences may
exceed the detection threshold but are asymptomatic and
undetected till the patients are deceased. These cases may
therefore be wrongly excluded from the late recurrence
category. On the other hand, patients who succumb to early
recurrences may harbor dormant metastases at different
sites, which would have progressed further had the patient
survived. Therefore, it remains a challenge to accurately
classify primary tumors as to their propensity for late
recurrences.

Treatment and prevention of late recurrences
As mentioned earlier, roughly 20% to 40% of patients

withERþbreast cancer eventually developdistantmetastases
and half of these events occur 5 years or later after diagnosis
of the primary tumor. However, the proportion of patients
carrying dormant cells may be much higher if in some
patients these cells never progress to become macrometas-
tases during the patient’s lifetime, and even if they do, the
resultant slowly growingmetastasesmay remain asymptom-

atic and undetected. A recent example of a patient cared for
by one of the authors (C.K. Osborne) who was found on a
CT scan ordered for a kidney stone to have a 5-cm asymp-
tomatic osteolytic lesion in the pelvis provenonbiopsy to be
an ERþ breast cancermetastasis developing 22 years after her
primary tumor diagnosis illustrates this possibility. Even
proposing to evaluate asymptomatic patients looking for
occult metastasis presents practical and ethical dilemmas.
With the rapid development of imaging and other detection
technologies, it is foreseeable that we will be able to detect
submillimeter or even single cancer cells in the future.
However, key questions remain: (i) How many of the
detected dormant metastases will progress to threaten
patients’ lives; (ii) How can we distinguish the dormant
metastases that are likely to progress from those that are not;
and (iii)What therapeutic strategies can be used to eradicate
them or prevent their progression? The answers to these
questions require us to directly investigate dormant cancer
cells. Thus, there are urgent needs to establish biologic
models of dormant metastases in the laboratory and obtain
patient-derived dormant cancer cells from the clinic. These
efforts will open several diagnostic and therapeutic avenues.
First, characterization of dormant cancer cells may lead to
identification of highly specific serum markers of dormant
cancer cells, including DNA, RNA, proteins, and metabo-
lites, that are released to the circulation. Second, identifica-
tion and investigation of survival pathways that sustain
dormant cancer cells may lead to therapies that eradicate
dormant cancer cells. Finally, elucidation of how dormant
cancer cells progress to resume aggressive growth may help
the prevention of overt metastases and facilitate the predic-
tion of which dormant metastases need to be proactively
managed in the clinic. Our current knowledge is far from
sufficient to achieve these goals. Therefore, preclinical and
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Figure 4. Identification of CTCs
and ER expression in peripheral
blood samples of patients with
metastatic breast cancer.
A, CTC enrichment after
depletion of red and white
blood cells (using RosetteSep,
StemCell Technologies):
immunofluorescence analysis
defines residual leukocytes as
CD45-positive/cytokeratin19-
negative cells (left) andCTCs as
CD45-negative/cytokeratin19-
positive cells (right). B,
evaluation of ER expression in
CTCs isolated from a single
draw of another patient with
ERþ metastatic breast cancer
reveals the coexistence of
ER", ER weakly positive, and
ER highly positive CTCs.
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clinical studies on dormantmicrometastases are imperative-
ly needed to promote our understanding of these critical
issues and ultimately to prevent late recurrences and further
improve the outcome of patients with breast cancer.
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