4 research outputs found

    you feel it? Using Vibration Rhythms to Communicate Information

    Get PDF
    Abstract. Development of interfaces for interaction in mobile scenarios faces the challenge of a broad variety of different possible user contexts. New approaches are needed, which demand a minimum of attention in situations where the user is engaged in other mobility tasks. In this paper, the results of an experiment targeting the recognition of vibration rhythms in real world mobile situations are depicted, suggesting further research on tactile mobile interfaces

    Värinäpalaute kävelynavigoinnin tukena

    Get PDF
    Älypuhelin on lähes korvannut erilliset autonavigaattorit, ja uusimmat navigointiohjelmat tukevat myös jalankulkutilaa. Älypuhelinten navigointiohjelmat antavat reittiopasteet puheena, reittinä kartalla ja symbolisina ohjeina. Nämä ohjeet vaativat käyttäjältä aktiivista seuraamista ja aiheuttavat liikennetilanteeseen kognitiivista kuormitusta ja tarkkaavaisuuden herpaantumista. Tuntoaistia voidaan käyttää rinnakkaisena aistikanavana kuulon ja näön rinnalla. Tässä tutkielmassa tutkitaan älypuhelimen kävelynavigointisovelluksen reittiopasteiden toistamista älykellolla värinäpalautteena. Älykellon värinämoottorilla tuotetaan käyttäjän ranteeseen värinään perustuvat reittiopasteet. Käyttäjätutkimuksella selvitettiin, ovatko värinäpalauteohjeet ymmärrettäviä ja tunnistettavia. Käyttäjät kävelivät lyhyen reitin tuntoaistiin perustuvien ohjeiden avustamana. Reittiopasteista toistettiin värinäpalautteella etäisyys seuraavaan käännökseen ja käännöksen suunta. Tutkimukseen osallistui kuusi vapaaehtoista henkilöä. Haastatteluiden perusteella värinäpalauteohjeet koettiin selkeiksi ja hyvin tunnistettaviksi. Tämän tutkimuksen tuloksia voidaan värinäpalauteohjeiden osalta soveltaa yhden värinämoottorin sisältäviin laitteisiin, eli ne voidaan siirtää myös älypuhelimella käytettäväksi, kunhan älypuhelin on esimerkiksi taskussa tiukasti kehoa vasten niin, että käyttäjä tuntee värinäpalauteohjeet

    Providing Proximity Safety and Speeding Alerts to Workers on Construction Sites Using Bluetooth Low Energy RTLS

    Get PDF
    The construction sector is one of the most dangerous industrial sectors. Struck-by object or equipment is one of the main causes of fatal accidents on construction sites. Although many regulations have been designed for struck-by accidents, these accidents are still causing many injuries and fatalities. According to the U.S. Bureau of Labor Statistic, the struck-by accidents has led to 112 deaths on construction site in 2018. The application of real-time location systems (RTLS) on construction sites provides new possibilities in construction safety management. Previous researchers have proposed using RTLS to track the location of workers and equipment on construction sites to improve construction safety. However, the previous methods have some limitations (e.g. cabling problems, positioning quality). Furthermore, providing effective safety alerts to workers within dangerous proximity to equipment has not been addressed in previous research. This research aims to develop a method for providing near real-time proximity alerts to workers on construction sites using Bluetooth Low Energy (BLE) RTLS based on angle of arrival (AOA). This RTLS can provide acceptable accuracy coupled with large coverage without the need of timing cables. Also, with the support of two-way communications between the tags and sensors, it is possible to provide vibro-tactile alerts to the workers using wristbands. In addition, alerts representing different cases of proximities and speeding were defined. The prototype system has the following features: (1) less cabling by using wireless technologies for data transmission, (2) less false alerts by generating the alerts to specific entities based on the micro-schedule of activities, (3) easily perceived alerts. Tests were conducted on a construction site of an electric substation to test the accuracy of the RTLS and the performance of the prototype system. The test results indicated that the prototype system is capable of detecting proximities and generating timely alerts to the involved entities

    Using pressure input and thermal feedback to broaden haptic interaction with mobile devices

    Get PDF
    Pressure input and thermal feedback are two under-researched aspects of touch in mobile human-computer interfaces. Pressure input could provide a wide, expressive range of continuous input for mobile devices. Thermal stimulation could provide an alternative means of conveying information non-visually. This thesis research investigated 1) how accurate pressure-based input on mobile devices could be when the user was walking and provided with only audio feedback and 2) what forms of thermal stimulation are both salient and comfortable and so could be used to design structured thermal feedback for conveying multi-dimensional information. The first experiment tested control of pressure on a mobile device when sitting and using audio feedback. Targeting accuracy was >= 85% when maintaining 4-6 levels of pressure across 3.5 Newtons, using only audio feedback and a Dwell selection technique. Two further experiments tested control of pressure-based input when walking and found accuracy was very high (>= 97%) even when walking and using only audio feedback, when using a rate-based input method. A fourth experiment tested how well each digit of one hand could apply pressure to a mobile phone individually and in combination with others. Each digit could apply pressure highly accurately, but not equally so, while some performed better in combination than alone. 2- or 3-digit combinations were more precise than 4- or 5-digit combinations. Experiment 5 compared one-handed, multi-digit pressure input using all 5 digits to traditional two-handed multitouch gestures for a combined zooming and rotating map task. Results showed comparable performance, with multitouch being ~1% more accurate but pressure input being ~0.5sec faster, overall. Two experiments, one when sitting indoors and one when walking indoors tested how salient and subjectively comfortable/intense various forms of thermal stimulation were. Faster or larger changes were more salient, faster to detect and less comfortable and cold changes were more salient and faster to detect than warm changes. The two final studies designed two-dimensional structured ‘thermal icons’ that could convey two pieces of information. When indoors, icons were correctly identified with 83% accuracy. When outdoors, accuracy dropped to 69% when sitting and 61% when walking. This thesis provides the first detailed study of how precisely pressure can be applied to mobile devices when walking and provided with audio feedback and the first systematic study of how to design thermal feedback for interaction with mobile devices in mobile environments
    corecore