1,558 research outputs found

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the centerā€™s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundationā€“ sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New Yorkā€“based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The Boston University Photonics Center annual report 2013-2014

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2013-2014 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This annual report summarizes activities of the Boston University Photonics Center in the 2013ā€“2014 academic year.This has been a good year for the Photonics Center. In the following pages, you will see that the centerā€™s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted 14.5Minnewresearchgrantsandcontractsthisyear.Facultyandstaffalsoexpandedtheireffortsineducationandtraining,throughNationalScienceFoundationā€“sponsoredsitesforResearchExperiencesforUndergraduatesandforTeachers.Asacommunity,wehostedacompellingseriesofdistinguishedinvitedspeakers,andemphasizedthethemeofInnovationsattheIntersectionsofMicro/NanofabricationTechnology,Biology,andBiomedicineatourannualFutureofLightSymposium.Wetookaleadershiproleinrunningnationalworkshopsonemergingphotonicfields,includinganOSAIncubatoronControlledLightPropagationthroughComplexMedia,andanNSFWorkshoponNoninvasiveImagingofBrainFunction.HighlightsofourresearchachievementsfortheyearincludeadistinctivePresidentialEarlyCareerAwardforScientistsandEngineers(PECASE)forAssistantProfessorXueHan,anambitiousnewDoDāˆ’sponsoredgrantforMultiāˆ’ScaleMultiāˆ’DisciplinaryModelingofElectronicMaterialsledbyProfessorEnricoBellotti,launchofourNIHāˆ’sponsoredCenterforInnovationinPointofCareTechnologiesfortheFutureofCancerCareledbyProfessorCathyKlapperich,andsuccessfulcompletionoftheambitiousIARPAāˆ’fundedcontractforNextGenerationSolidImmersionMicroscopyforFaultIsolationinBackāˆ’SideCircuitAnalysisledbyProfessorBennettGoldberg.Thesethreeprograms,whichrepresentmorethan14.5M in new research grants and contracts this year. Faculty and staff also expanded their efforts in education and training, through National Science Foundationā€“sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Innovations at the Intersections of Micro/Nanofabrication Technology, Biology, and Biomedicine at our annual Future of Light Symposium. We took a leadership role in running national workshops on emerging photonic fields, including an OSA Incubator on Controlled Light Propagation through Complex Media, and an NSF Workshop on Noninvasive Imaging of Brain Function. Highlights of our research achievements for the year include a distinctive Presidential Early Career Award for Scientists and Engineers (PECASE) for Assistant Professor Xue Han, an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, launch of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and successful completion of the ambitious IARPA-funded contract for Next Generation Solid Immersion Microscopy for Fault Isolation in Back-Side Circuit Analysis led by Professor Bennett Goldberg. These three programs, which represent more than 20M in research funding for the University, are indicative of the breadth of Photonics Center research interests: from fundamental modeling of optoelectronic materials to practical development of cancer diagnostics, from exciting new discoveries in optogenetics for understanding brain function to the achievement of world-record resolution in semiconductor circuit microscopy. Our community welcomed an auspicious cohort of new faculty members, including a newly hired assistant professor and a newly hired professor (and Chair of the Mechanical Engineering Department). The Industry/University Cooperative Research Centerā€”the centerpiece of our translational biophotonics programā€”continues to focus on advancing the health care and medical device industries, and has entered its fourth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base

    Socially Beneficial Metaverse: Framework, Technologies, Applications, and Challenges

    Full text link
    In recent years, the maturation of emerging technologies such as Virtual Reality, Digital twins, and Blockchain has accelerated the realization of the metaverse. As a virtual world independent of the real world, the metaverse will provide users with a variety of virtual activities that bring great convenience to society. In addition, the metaverse can facilitate digital twins, which offers transformative possibilities for the industry. Thus, the metaverse has attracted the attention of the industry, and a huge amount of capital is about to be invested. However, the development of the metaverse is still in its infancy and little research has been undertaken so far. We describe the development of the metaverse. Next, we introduce the architecture of the socially beneficial metaverse (SB-Metaverse) and we focus on the technologies that support the operation of SB-Metaverse. In addition, we also present the applications of SB-Metaverse. Finally, we discuss several challenges faced by SB-Metaverse which must be addressed in the future.Comment: 28 pages, 6 figures, 3 table

    Framing Environmental Policy Instrument Choice

    Get PDF

    A Comprehensive Empirical Investigation on Failure Clustering in Parallel Debugging

    Full text link
    The clustering technique has attracted a lot of attention as a promising strategy for parallel debugging in multi-fault scenarios, this heuristic approach (i.e., failure indexing or fault isolation) enables developers to perform multiple debugging tasks simultaneously through dividing failed test cases into several disjoint groups. When using statement ranking representation to model failures for better clustering, several factors influence clustering effectiveness, including the risk evaluation formula (REF), the number of faults (NOF), the fault type (FT), and the number of successful test cases paired with one individual failed test case (NSP1F). In this paper, we present the first comprehensive empirical study of how these four factors influence clustering effectiveness. We conduct extensive controlled experiments on 1060 faulty versions of 228 simulated faults and 141 real faults, and the results reveal that: 1) GP19 is highly competitive across all REFs, 2) clustering effectiveness decreases as NOF increases, 3) higher clustering effectiveness is easier to achieve when a program contains only predicate faults, and 4) clustering effectiveness remains when the scale of NSP1F is reduced to 20%

    Free Software for PET Imaging

    Get PDF

    ALGO: Synthesizing Algorithmic Programs with LLM-Generated Oracle Verifiers

    Full text link
    Large language models (LLMs) excel at implementing code from functionality descriptions but struggle with algorithmic problems that require not only implementation but also identification of the suitable algorithm. Moreover, LLM-generated programs lack guaranteed correctness and require human verification. To address these challenges, we propose ALGO, a framework that synthesizes Algorithmic programs with LLM-Generated Oracles to guide the generation and verify their correctness. ALGO first generates a reference oracle by prompting an LLM to exhaustively enumerate all the combinations of relevant variables. This oracle is then utilized to guide an arbitrary search strategy in exploring the algorithm space and to verify the synthesized algorithms. Our study shows that the LLM-generated oracles are correct for 88% of the cases. With the oracles as verifiers, ALGO can be integrated with any existing code generation model in a model-agnostic manner to enhance its performance. Experiments show that when equipped with ALGO, we achieve an 8x better one-submission pass rate over the Codex model and a 2.6x better one-submission pass rate over CodeT, the current state-of-the-art model on CodeContests. We can also get 1.3x better pass rate over the ChatGPT Code Interpreter on unseen problems. The problem set we used for testing, the prompts we used, the verifier and solution programs, and the test cases generated by ALGO are available at https://github.com/zkx06111/ALGO.Comment: NeurIPS 202

    Database machines in support of very large databases

    Get PDF
    Software database management systems were developed in response to the needs of early data processing applications. Database machine research developed as a result of certain performance deficiencies of these software systems. This thesis discusses the history of database machines designed to improve the performance of database processing and focuses primarily on the Teradata DBC/1012, the only successfully marketed database machine that supports very large databases today. Also reviewed is the response of IBM to the performance needs of its database customers; this response has been in terms of improvements in both software and hardware support for database processing. In conclusion, an analysis is made of the future of database machines, in particular the DBC/1012, in light of recent IBM enhancements and its immense customer base
    • ā€¦
    corecore