67,114 research outputs found

    Schedulability analysis of timed CSP models using the PAT model checker

    Get PDF
    Timed CSP can be used to model and analyse real-time and concurrent behaviour of embedded control systems. Practical CSP implementations combine the CSP model of a real-time control system with prioritized scheduling to achieve efficient and orderly use of limited resources. Schedulability analysis of a timed CSP model of a system with respect to a scheduling scheme and a particular execution platform is important to ensure that the system design satisfies its timing requirements. In this paper, we propose a framework to analyse schedulability of CSP-based designs for non-preemptive fixed-priority multiprocessor scheduling. The framework is based on the PAT model checker and the analysis is done with dense-time model checking on timed CSP models. We also provide a schedulability analysis workflow to construct and analyse, using the proposed framework, a timed CSP model with scheduling from an initial untimed CSP model without scheduling. We demonstrate our schedulability analysis workflow on a case study of control software design for a mobile robot. The proposed approach provides non-pessimistic schedulability results

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    A Novel Side-Channel in Real-Time Schedulers

    Full text link
    We demonstrate the presence of a novel scheduler side-channel in preemptive, fixed-priority real-time systems (RTS); examples of such systems can be found in automotive systems, avionic systems, power plants and industrial control systems among others. This side-channel can leak important timing information such as the future arrival times of real-time tasks.This information can then be used to launch devastating attacks, two of which are demonstrated here (on real hardware platforms). Note that it is not easy to capture this timing information due to runtime variations in the schedules, the presence of multiple other tasks in the system and the typical constraints (e.g., deadlines) in the design of RTS. Our ScheduLeak algorithms demonstrate how to effectively exploit this side-channel. A complete implementation is presented on real operating systems (in Real-time Linux and FreeRTOS). Timing information leaked by ScheduLeak can significantly aid other, more advanced, attacks in better accomplishing their goals

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    OS-Assisted Task Preemption for Hadoop

    Full text link
    This work introduces a new task preemption primitive for Hadoop, that allows tasks to be suspended and resumed exploiting existing memory management mechanisms readily available in modern operating systems. Our technique fills the gap that exists between the two extremes cases of killing tasks (which waste work) or waiting for their completion (which introduces latency): experimental results indicate superior performance and very small overheads when compared to existing alternatives

    Managing Uncertainty: A Case for Probabilistic Grid Scheduling

    Get PDF
    The Grid technology is evolving into a global, service-orientated architecture, a universal platform for delivering future high demand computational services. Strong adoption of the Grid and the utility computing concept is leading to an increasing number of Grid installations running a wide range of applications of different size and complexity. In this paper we address the problem of elivering deadline/economy based scheduling in a heterogeneous application environment using statistical properties of job historical executions and its associated meta-data. This approach is motivated by a study of six-month computational load generated by Grid applications in a multi-purpose Grid cluster serving a community of twenty e-Science projects. The observed job statistics, resource utilisation and user behaviour is discussed in the context of management approaches and models most suitable for supporting a probabilistic and autonomous scheduling architecture

    Group and individual time management tools: what you get is not what you need

    Get PDF
    Some studies of diaries and scheduling systems have considered how individuals use diaries with a view to proposing requirements for computerised time management tools. Others have focused on the criteria for success of group scheduling systems. Few have paid attention to how people use a battery of tools as an ensemble. This interview study reports how users exploit paper, personal digital assistants (PDAs) and a group scheduling system for their time management. As with earlier studies, we find many shortcomings of different technologies, but studying the ensemble rather than individual tools points towards a different conclusion: rather than aiming towards producing electronic time management tools that replace existing paper-based tools, we should be aiming to understand the relative strengths and weaknesses of each technology and look towards more seamless integration between tools. In particular, the requirements for scheduling and those for more responsive, fluid time management conflict in ways that demand different kinds of support

    Assessing dynamic models for high priority waste collection in smart cities

    Get PDF
    Waste Management (WM) represents an important part of Smart Cities (SCs) with significant impact on modern societies. WM involves a set of processes ranging from waste collection to the recycling of the collected materials. The proliferation of sensors and actuators enable the new era of Internet of Things (IoT) that can be adopted in SCs and help in WM. Novel approaches that involve dynamic routing models combined with the IoT capabilities could provide solutions that outperform existing models. In this paper, we focus on a SC where a number of collection bins are located in different areas with sensors attached to them. We study a dynamic waste collection architecture, which is based on data retrieved by sensors. We pay special attention to the possibility of immediate WM service in high priority areas, e.g., schools or hospitals where, possibly, the presence of dangerous waste or the negative effects on human quality of living impose the need for immediate collection. This is very crucial when we focus on sensitive groups of citizens like pupils, elderly or people living close to areas where dangerous waste is rejected. We propose novel algorithms aiming at providing efficient and scalable solutions to the dynamic waste collection problem through the management of the trade-off between the immediate collection and its cost. We describe how the proposed system effectively responds to the demand as realized by sensor observations and alerts originated in high priority areas. Our aim is to minimize the time required for serving high priority areas while keeping the average expected performance at high level. Comprehensive simulations on top of the data retrieved by a SC validate the proposed algorithms on both quantitative and qualitative criteria which are adopted to analyze their strengths and weaknesses. We claim that, local authorities could choose the model that best matches their needs and resources of each city
    • ā€¦
    corecore