109 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Traffic Management and Congestion Control in the ATM Network Model.

    Get PDF
    Asynchronous Transfer Mode (ATM) networking technology has been chosen by the International Telegraph and Telephony Consultative Committee (CCITT) for use on future local as well as wide area networks to handle traffic types of a wide range. It is a cell based network architecture that resembles circuit switched networks, providing Quality of Service (QoS) guarantees not normally found on data networks. Although the specifications for the architecture have been continuously evolving, traffic congestion management techniques for ATM networks have not been very well defined yet. This thesis studies the traffic management problem in detail, provides some theoretical understanding and presents a collection of techniques to handle the problem under various operating conditions. A detailed simulation of various ATM traffic types is carried out and the collected data is analyzed to gain an insight into congestion formation patterns. Problems that may arise during migration planning from legacy LANs to ATM technology are also considered. We present an algorithm to identify certain portions of the network that should be upgraded to ATM first. The concept of adaptive burn-in is introduced to help ease the computational costs involved in virtual circuit setup and tear down operations

    ACSys/RDN experiences with Telstra’s experimental broadband network, second progress report

    Get PDF
    This report addresses three issues relevant to DHPC network infrastructure requirements:. · Technically, what we can currently achieve with the EBN? · What are desirable qualities in future ATM networks? · What further development of the EBN would we like to see for other applications? In writing this report, we will briefly describe the EBN ATM experience of ACSys’ Distributed High Performance Computing Project and Digital Media Libraries project, explain some of the technology and networking issues we have dealt with and summarise what we have learned. We have also included some background material on the EBN and ATM networks in general

    Quality of service over ATM networks

    Get PDF
    PhDAbstract not availabl

    Performance of TCP over ABR with Long-Range Dependent VBR Background Traffic over Terrestrial and Satellite ATM networks

    Full text link
    Compressed video is well known to be self-similar in nature. We model VBR carrying Long-Range Dependent (LRD), multiplexed MPEG-2 video sources. The actual traffic for the model is generated using fast-fourier transform of generate the fractional gaussian noise (FGN) sequence. Our model of compressed video sources bears similarity to an MPEG-2 Transport Stream carrying video, i.e., it is long-range dependent and generates traffic in a piecewise-CBR fashion. We study the effect of such VBR traffic on ABR carrying TCP traffic. The effect of such VBR traffic is that the ABR capacity is highly variant. We find that a switch algorithm like ERICA+ can tolerate this variance in ABR capacity while maintaining high throughput and low delay. We present simulation results for terrestrial and satellite configurations.Comment: Proceedings of LCN `9

    Supporting real time video over ATM networks

    Get PDF
    Includes bibliographical references.In this project, we propose and evaluate an approach to delimit and tag such independent video slice at the ATM layer for early discard. This involves the use of a tag cell differentiated from the rest of the data by its PTI value and a modified tag switch to facilitate the selective discarding of affected cells within each video slice as opposed to dropping of cells at random from multiple video frames

    The application of forward error correction techniques in wireless ATM

    Get PDF
    Bibliography: pages 116-121.The possibility of providing wireless access to an ATM network promises nomadic users a communication tool of unparalleled power and flexibility. Unfortunately, the physical realization of a wireless A TM system is fraught with technical difficulties, not the least of which is the problem of supporting a traditional ATM protocol over a non-benign wireless link. The objective of this thesis, titled "The Application of Forward Error Correction Techniques in Wireless ATM' is to examine the feasibility of using forward error correction techniques to improve the perceived channel characteristics to the extent that the channel becomes transparent to the higher layers and allows the use of an unmodified A TM protocol over the channel. In the course of the investigation that this dissertation describes, three possible error control strategies were suggested for implementation in a generic wireless channel. These schemes used a combination of forward error correction coding schemes, automatic repeat request schemes and interleavers to combat the impact of bit errors on the performance of the link. The following error control strategies were considered : 1. A stand alone fixed rate Reed-Solomon encoder/decoder with automatic repeat request. 2. A concatenated Reed-Solomon, convolution encoder/decoder with automatic request and convolution interleaving for the convolution codec. 3. A dynamic rate encoder/decoder using either a concatenated Reed-Solomon, convolution scheme or a Reed-Solomon only scheme with variable length Reed-Solomon words

    Resource management for multimedia traffic over ATM broadband satellite networks

    Get PDF
    PhDAbstract not availabl

    QoS provisioning in multimedia streaming

    Get PDF
    Multimedia consists of voice, video, and data. Sample applications include video conferencing, video on demand, distance learning, distributed games, and movies on demand. Providing Quality of Service (QoS) for multimedia streaming has been a difficult and challenging problem. When multimedia traffic is transported over a network, video traffic, though usually compressed/encoded for bandwidth reduction, still consumes most of the bandwidth. In addition, compressed video streams typically exhibit highly variable bit rates as well as long range dependence properties, thus exacerbating the challenge in meeting the stringent QoS requirements of multimedia streaming with high network utilization. Dynamic bandwidth allocation in which video traffic prediction can play an important role is thus needed. Prediction of the variation of the I frame size using Least Mean Square (LMS) is first proposed. Owing to a smoother sequence, better prediction has been achieved as compared to the composite MPEG video traffic prediction scheme. One problem with this LMS algorithm is its slow convergence. In Variable Bit Rate (VBR) videos characterized by frequent scene changes, the LMS algorithm may result in an extended period of intractability, and thus may experience excessive cell loss during scene changes. A fast convergent non-linear predictor called Variable Step-size Algorithm (VSA) is subsequently proposed to overcome this drawback. The VSA algorithm not only incurs small prediction errors but more importantly achieves fast convergence. It tracks scene changes better than LMS. Bandwidth is then assigned based on the predicted I frame size which is usually the largest in a Group of Picture (GOP). Hence, the Cell Loss Ratio (CLR) can be kept small. By reserving bandwidth at least equal to the predicted one, only prediction errors need to be buffered. Since the prediction error was demonstrated to resemble white noise or exhibits at most short term memory, smaller buffers, less delay, and higher bandwidth utilization can be achieved. In order to further improve network bandwidth utilization, a QoS guaranteed on-line bandwidth allocation is proposed. This method allocates the bandwidth based on the predicted GOP and required QoS. Simulations and analytical results demonstrate that this scheme provides guaranteed delay and achieves higher bandwidth utilization. Network traffic is generally accepted to be self similar. Aggregating self similar traffic can actually intensify rather than diminish burstiness. Thus, traffic prediction plays an important role in network management. Least Mean Kurtosis (LMK), which uses the negated kurtosis of the error signal as the cost function, is proposed to predict the self similar traffic. Simulation results show that the prediction performance is improved greatly as compared to the LMS algorithm. Thus, it can be used to effectively predict the real time network traffic. The Differentiated Service (DiffServ) model is a less complex and more scalable solution for providing QoS to IP as compared to the Integrated Service (IntServ) model. We propose to transport MPEG frames through various service classes of DiffServ according to the MPEG video characteristics. Performance analysis and simulation results show that our proposed approach can not only guarantee QoS but can also achieve high bandwidth utilization. As the end video quality is determined not only by the network QoS but also by the encoded video quality, we consider video quality from these two aspects and further propose to transport spatial scalable encoded videos over DiffServ. Performance analysis and simulation results show that this can provision QoS guarantees. The dropping policy we propose at the egress router can reduce the traffic load as well as the risk of congestion in other domains

    An overview of new video techniques

    Get PDF
    Current video transmission and distribution systems at CERN use a variety of analogue techniques which are several decades old. It will soon be necessary to replace this obsolete equipment, and the opportunity therefore exists to rationalize the diverse systems now in place. New standards for digital transmission and distribution are now emerging. This paper gives an overview of these new standards and of the underlying technology common to many of them. The paper reviews Digital Video Broadcasting (DVB), the Motion Picture Experts Group specifications (MPEG1, MPEG2, MPEG4, and MPEG7), videoconferencing standards (H.261 etc.), and packet video systems, together with predictions of the penetration of these standards into the consumer market. The digital transport mechanisms now available (IP, SDH, ATM) are also reviewed, and the implication of widespread adoption of these systems on video transmission and distribution is analysed
    corecore