2 research outputs found

    Camera Space Particle Filter for the Robust and Precise Indoor Localization of a Wheelchair

    Get PDF
    This paper presents the theoretical development and experimental implementation of a sensing technique for the robust and precise localization of a robotic wheelchair. Estimates of the vehicle’s position and orientation are obtained, based on camera observations of visual markers located at discrete positions within the environment. A novel implementation of a particle filter on camera sensor space (Camera-Space Particle Filter) is used to combine visual observations with sensed wheel rotations mapped onto a camera space through an observation function. The camera space particle filter fuses the odometry and vision sensors information within camera space, resulting in a precise update of the wheelchair’s pose. Using this approach, an inexpensive implementation on an electric wheelchair is presented. Experimental results within three structured scenarios and comparative performance using an Extended Kalman Filter (EKF) and Camera-Space Particle Filter (CSPF) implementations are discussed. The CSPF was found to be more precise in the pose of the wheelchair than the EKF since the former does not require the assumption of a linear system affected by zero-mean Gaussian noise. Furthermore, the time for computational processing for both implementations is of the same order of magnitude

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots
    corecore