7 research outputs found

    A New CAC Policy Based on Traffic Characterization in Cellular Networks

    Get PDF
    The Call Admission Control (CAC) method presented in this paper is based on the statistical properties of the network’s traffic variables. It probabilistically estimates the time until the release of a seized channel: the admission control depends on the computed mean remaining time averaged along all channels at a specific instant and on a time threshold. The policy produces a smooth transition between the QoS metrics, giving the operator the freedom to design the network at the desired QoS point. Another valuable property is that the algorithm is straightforward and fed only by simple teletraffic metrics: distribution and the first and second moments of Channel Holding Time (CHT). Simplicity is important for a CAC method because decisions for accepting or rejecting calls must be computed quickly and frequently.Peer Reviewe

    DISEÑO ÓPTIMO DE POLÍTICAS DE CONTROL DE ADMISIÓN DEL TIPO MULTIPLE FRACTIONAL GUARD CHANNEL (MFGC) PARA REDES MÓVILES MULTISERVICIO

    Full text link
    Las políticas de CA MFGC son probablemente las que han suscitado un mayor interés en el entorno móvil. Sin embargo, realizar el ajuste de parámetros de este tipo de políticas entraña un esfuerzo computacional que puede llegar a ser prohibitivo. Para hacer frente a esta limitaciones se proponen algunos algoritmos basados en aproximaciones númerica. Abstract: Multiple Fractional Guard Channel (MFGC) policy provides good results and its implementation is quite simple. Nevertheless, computing the optimal parameters setting of this policy can constitute a high computational cost. To face these computational limitations some algorithms based in numerical approximations are proposed.Bernal Mor, E. (2007). DISEÑO ÓPTIMO DE POLÍTICAS DE CONTROL DE ADMISIÓN DEL TIPO MULTIPLE FRACTIONAL GUARD CHANNEL (MFGC) PARA REDES MÓVILES MULTISERVICIO. http://hdl.handle.net/10251/12625Archivo delegad

    Diseño óptimo de políticas de Control de Admisión (CA) del tipo Multiple Fractional Guard Channel (MFGC) para redes móviles multiservicio

    Full text link
    [ES] La necesidad de garantizar Calidad de Servicio (QoS) en escenarios móviles multiservicio, lleva a explorar nuevas estrategias que permitan minimizar la probabilidad de terminación forzosa de una conexión debido a un fallo de handover por insuficiencia de recursos en la celda destino. Estas estrategias deben estar coordinadas con los sistemas de Control de Admisión (CA). Las políticas de CA del tipo MFGC son probablemente las que han suscitado un mayor interés pues consiguen unas buenas prestaciones y su implementación es bastante simple. Sin embargo, realizar el ajuste de parámetros de este tipo de políticas de una manera óptima entraña un esfuerzo computacional que puede llegar a ser prohibitivo. Para hacer frente a esta limitaciones computacionales se han propuesto algunos algoritmos basados en aproximaciones numéricas. De los resultados obtenidos, se observa que el coste computacional necesario puede llegar a ser muy elevado en algoritmos previos descritos en la literatura. La aproximación basada en fórmulas recurrentes no ofrece resultados totalmente convincentes, pues la configuración calculada a partir de éste no cumple los objetivos de QoS. Finalmente se propone un algoritmo que mejora los tiempos de cálculo respecto al algoritmo previo y obtiene resultados fiables, pero es mucho más lento que el algoritmo que se basa en la aproximación.[EN] The need to guarantee certain QoS requirements in multiservice cellular networks has led to explore new strategies to minimize blocking probabilities. These strategies must be coordinated with admission control systems (CA). In this paper we study Multiple Fractional Guard Channel (MFGC) policy which provides good results and its implementation is quite simple. Nevertheless, computing the optimal parameters setting of this policy can constitute a high computational cost. To face these computational limitations some algorithms based in numerical approximations are proposed. The obtained results show that the algorithm based in one-dimensional recursion formulas is not a good approximation since the policy configuration obtained do not fulfills the QoS constrains. But this approximation can be useful to accelerate a previous algorithm appeared in the literature. Finally, we propose another algorithm which outperforms this previous algorithm in terms of computational cost and fulfills the QoS constraints, but it is slower than the algorithm based in one-dimensional recursion formulas.Bernal Mor, E. (2008). Diseño óptimo de políticas de Control de Admisión (CA) del tipo Multiple Fractional Guard Channel (MFGC) para redes móviles multiservicio. http://hdl.handle.net/10251/27132.Archivo delegad

    Robustness of optimal channel reservation using handover prediction in multiservice wireless networks

    Full text link
    The aim of our study is to obtain theoretical limits for the gain that can be expected when using handover prediction and to determine the sensitivity of the system performance against different parameters. We apply an average-reward reinforcement learning approach based on afterstates to the design of optimal admission control policies in mobile multimedia cellular networks where predictive information related to the occurrence of future handovers is available. We consider a type of predictor that labels active mobile terminals in the cell neighborhood a fixed amount of time before handovers are predicted to occur, which we call the anticipation time. The admission controller exploits this information to reserve resources efficiently. We show that there exists an optimum value for the anticipation time at which the highest performance gain is obtained. Although the optimum anticipation time depends on system parameters, we find that its value changes very little when the system parameters vary within a reasonable range. We also find that, in terms of system performance, deploying prediction is always advantageous when compared to a system without prediction, even when the system parameters are estimated with poor precision. © Springer Science+Business Media, LLC 2012.The authors would like to thank the reviewers for their valuable comments that helped to improve the quality of the paper. This work has been supported by the Spanish Ministry of Education and Science and European Comission (30% PGE, 70% FEDER) under projects TIN2008-06739-C04-02 and TIN2010-21378-C02-02 and by Comunidad de Madrid through project S-2009/TIC-1468.Martínez Bauset, J.; Giménez Guzmán, JM.; Pla, V. (2012). Robustness of optimal channel reservation using handover prediction in multiservice wireless networks. Wireless Networks. 18(6):621-633. https://doi.org/10.1007/s11276-012-0423-6S621633186Ji, S., Chen, W., Ding, X., Chen, Y., Zhao, C., & Hu, C. (2010). Potential benefits of GPS/GLONASS/GALILEO integration in an urban canyon–Hong Kong. Journal of Navigation, 63(4), 681–693.Soh, W., & Kim, H. (2006). A predictive bandwidth reservation scheme using mobile positioning and road topology information. IEEE/ACM Transactions on Networking, 14(5), 1078–1091.Kwon, H., Yang, M., Park, A., & Venkatesan, S. (2008). Handover prediction strategy for 3G-WLAN overlay networks. In Proceedings: IEEE network operations and management symposium (NOMS) (pp. 819–822).Huang, C., Shen, H., & Chuang, Y. (2010). An adaptive bandwidth reservation scheme for 4G cellular networks using flexible 2-tier cell structure. Expert Systems with Applications, 37(9), 6414–6420.Wanalertlak, W., Lee, B., Yu, C., Kim, M., Park, S., & Kim, W. (2011). Behavior-based mobility prediction for seamless handoffs in mobile wireless networks. Wireless Networks, 17(3), 645–658.Becvar, Z., Mach, P., & Simak, B. (2011). Improvement of handover prediction in mobile WiMAX by using two thresholds. Computer Networks, 55, 3759–3773.Sgora, A., & Vergados, D. (2009). Handoff prioritization and decision schemes in wireless cellular networks: a survey. IEEE Communications Surveys and Tutorials, 11(4), 57–77.Choi, S., & Shin, K. G. (2002). Adaptive bandwidth reservation and admission control in QoS-sensitive cellular networks. IEEE Transactions on Parallel and Distributed Systems, 13(9), 882–897.Ye, Z., Law, L., Krishnamurthy, S., Xu, Z., Dhirakaosal, S., Tripathi, S., & Molle, M. (2007). Predictive channel reservation for handoff prioritization in wireless cellular networks. Computer Networks, 51(3), 798–822.Abdulova, V., & Aybay, I. (2011). Predictive mobile-oriented channel reservation schemes in wireless cellular networks. Wireless Networks, 17(1), 149–166.Ramjee, R., Nagarajan, R., & Towsley, D. (1997). On optimal call admission control in cellular networks. Wireless Networks, 3(1), 29–41.Bartolini, N. (2001). Handoff and optimal channel assignment in wireless networks. Mobile Networks and Applications, 6(6), 511–524.Bartolini, N., & Chlamtac, I. (2002). Call admission control in wireless multimedia networks. In Proceedings: Personal, indoor and mobile radio communications (PIMRC) (pp. 285–289).Pla, V., & Casares-Giner, V. (2003). Optimal admission control policies in multiservice cellular networks. In Proceedings of the international network optimization conference (INOC) (pp. 466–471).Chu, K., Hung, L., & Lin, F. (2009). Adaptive channel reservation for call admission control to support prioritized soft handoff calls in a cellular CDMA system. Annals of Telecommunications, 64(11), 777–791.El-Alfy, E., & Yao, Y. (2011). Comparing a class of dynamic model-based reinforcement learning schemes for handoff prioritization in mobile communication networks. Expert Systems With Applications, 38(7), 8730–8737.Gimenez-Guzman, J. M., Martinez-Bauset, J., & Pla, V. (2007). A reinforcement learning approach for admission control in mobile multimedia networks with predictive information. IEICE Transactions on Communications , E-90B(7), 1663–1673.Sutton R., Barto A. G. (1998) Reinforcement learning: An introduction. The MIT press, Cambridge, MassachusettsBusoniu, L., Babuska, R., De Schutter, B., & Ernst, D. (2010). Reinforcement learning and dynamic programming using function approximators. Boca Raton, FL: CRC Press.Watkins, C., & Dayan, P. (1992). Q-learning. Machine learning, 8(3–4), 279–292.Brown, T. (2001). Switch packet arbitration via queue-learning. Advances in Neural Information Processing Systems, 14, 1337–1344.Proper, S., & Tadepalli, P. (2006). Scaling model-based average-reward reinforcement learning for product delivery. In Proceedings 17th European conference on machine learning (pp. 735–742).Driessens, K., Ramon, J., & Gärtner, T. (2006). Graph kernels and Gaussian processes for relational reinforcement learning. Machine Learning, 64(1), 91–119.Banerjee, B., & Stone, P. (2007). General game learning using knowledge transfer. In Proceedings 20th international joint conference on artificial intelligence (pp. 672–677).Martinez-Bauset, J., Pla, V., Garcia-Roger, D., Domenech-Benlloch, M. J., & Gimenez-Guzman, J. M. (2008). Designing admission control policies to minimize blocking/forced-termination. In G. Ming, Y. Pan & P. Fan (Eds.), Advances in wireless networks: Performance modelling, analysis and enhancement (pp. 359–390). New York: Nova Science Pub Inc.Biswas, S., & Sengupta, B. (1997). Call admissibility for multirate traffic in wireless ATM networks. In Proceedings IEEE INFOCOM (2, pp. 649–657).Evans, J. S., & Everitt, D. (1999). Effective bandwidth-based admission control for multiservice CDMA cellular networks. IEEE Transactions on Vehicular Technology, 48(1), 36–46.Gilhousen, K., Jacobs, I., Padovani, R., Viterbi, A., Weaver, L. A. J., & Wheatley, C. E., III. (1991). On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology, 40(2), 303–312.Hegde, N., & Altman, E. (2006). Capacity of multiservice WCDMA networks with variable GoS. Wireless Networks, 12, 241–253.Ben-Shimol, Y., Kitroser, I., & Dinitz, Y. (2006). Two-dimensional mapping for wireless OFDMA systems. IEEE Transactions on Broadcasting, 52(3), 388–396.Gao, D., Cai, J., & Ngan, K. N. (2005). Admission control in IEEE 802.11e wireless LANs. IEEE Network, 19(4), 6–13.Liu, T., Bahl, P., & Chlamtac, I. (1998). Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks. IEEE Journal on Selected Areas in Communications, 16(6), 922–936.Hu, F., & Sharma, N. (2004). Priority-determined multiclass handoff scheme with guaranteed mobile qos in wireless multimedia networks. IEEE Transactions on Vehicular Technology, 53(1), 118–135.Chan, J., & Seneviratne, A. (1999). A practical user mobility prediction algorithm for supporting adaptive QoS in wireless networks. In Proceedings IEEE international conference on networks (ICON) (pp. 104–111).Jayasuriya, A., & Asenstorfer, J. (2002). Mobility prediction model for cellular networks based on the observed traffic patterns. In Proceedings of IASTED international conference on wireless and optical communication (WOC) (pp. 386–391).Diederich, J., & Zitterbart, M. (2005). A simple and scalable handoff prioritization scheme. Computer Communications, 28(7), 773–789.Rashad, S., Kantardzic, M., & Kumar, A. (2006). User mobility oriented predictive call admission control and resource reservation for next-generation mobile networks. Journal of Parallel and Distributed Computing, 66(7), 971–988.Soh, W. -S., & Kim, H. (2003). QoS provisioning in cellular networks based on mobility prediction techniques. IEEE Communications Magazine, 41(1), 86 – 92.Lott, M., Siebert, M., Bonjour, S., vonHugo, D., & Weckerle, M. (2004). Interworking of WLAN and 3G systems. Proceedings IEE Communications, 151(5), 507 – 513.Sanabani, M., Shamala, S., Othman, M., & Zukarnain, Z. (2007). An enhanced bandwidth reservation scheme based on road topology information for QoS sensitive multimedia wireless cellular networks. In Proceedings of the 2007 international conference on computational science and its applications—Part II (ICCSA) (pp. 261–274).Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, algorithms, and empirical results. Machine Learning, 22(1–3), 159–196.Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. New York: Wiley.Das, T. K., Gosavi, A., Mahadevan, S., & Marchalleck, N. (1999). Solving semi-markov decision problems using average reward reinforcement learning. Management Science, 45(4), 560–574.Darken, C., Chang, J., & Moody, J. (1992). Learning rate schedules for faster stochastic gradient search. In Proceedings of the IEEE-SP workshop on neural networks for signal processing II. (pp. 3–12)

    Contribución al control de admisión en redes móviles celulares multiservicio

    Full text link
    El trabajo contenido en esta tesis trata de contribuir en la caracterización, comprensión y desarrollo de mecanismos para la apropiada gestión de los recursos en las redes móviles celulares. En concreto, la aportación que comprende este esfuerzo incluye el desarrollo de modelos, algoritmos y métodos para estudiar el control de admisión desde una perspectiva estacionaria, y el desarrollo de esquemas que optimicen el comportamiento del control de admisión de manera adaptativa con respecto a las situaciones no estacionarias de los sistemas reales.García Roger, D. (2007). Contribución al control de admisión en redes móviles celulares multiservicio [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1845Palanci

    Modelado y evaluación de la gestión de recursos en redes móviles celulares

    Full text link
    En la última década las redes móviles celulares han experimentado un enorme crecimiento. Asimismo el aumento del número de servicios y el ancho de banda que requieren hace necesario un correcto modelado y gestión de recursos. Este trabajo pretende ser una contribución al desarrollo de modelos para el estudio y la evaluación de la gestión de recursos radio en redes móviles celulares. Más concretamente, se ha pretendido profundizar en el estudio de modelos de reintentos. Estos modelos son de gran utilidad para la caracterización de diferentes aspectos de funcionamiento. Tradicionalmente, se ha entendido por sistema de reintentos aquel sistema en que los usuarios que son bloqueados, tratan de acceder de nuevo, tras un tiempo de espera. Esta es una característica propia del comportamiento humano que no debe obviarse en el modelado de sistemas de comunicaciones, puesto que puede tener un gran impacto en las prestaciones ofrecidas por el sistema. Adicionalmente, en las redes móviles celulares, por su estructura y características propias, podemos encontrar este efecto no sólo debido al comportamiento humano, sino que también puede deberse a la gestión de los handovers. Este tipo de reintentos, incluido en el estándar de GSM, permite realizar un número máximo de reintentos consecutivos, mientras que el terminal se encuentra en el área de handover, sin que el usuario intervenga. Es posible encontrar otro tipo de sistemas de reintentos que caracterizan toda una serie de nuevas aplicaciones. Se trata de aplicaciones que, en caso de bloqueo, permiten reintentar el acceso disminuyendo el número de recursos solicitado. Así, aparecen las aplicaciones rate adaptive en que, según el grado de congestión, se ofrece un servicio de mayor o menor calidad. Este tipo de modelo resulta de especial interés para tratar aplicaciones como VoIP o servicios de videoconferencia para las que se han desarrollado codecs que permiten adaptar la tasa de servicio a las condiciones de la red.Doménech Benlloch, MJ. (2009). Modelado y evaluación de la gestión de recursos en redes móviles celulares [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8319Palanci
    corecore