14 research outputs found

    Spaceborne Microwave Radiometry: Calibration, Intercalibration, and Science Applications.

    Full text link
    Spaceborne microwave radiometry is the backbone for assimilation into numerical weather forecasts and provides important information for Earth and environment science. The extensive radiometric data must go through the process of calibration and intercalibration prior to science application. This work deals with the entire process by providing systematic methods and addressing critical challenges. These methods have been applied to NASA and JAXA’s Global Precipitation Measurement (GPM) mission and many other radiometers to make important contributions and to solve long-standing issues with coastal science applications. Specifically, it addresses four important challenges: 1) improving cold calibration with scan dependent characterization; 2) reducing the uncertainty of warm calibration; 3) deriving calibration dependence across the full range of brightness temperatures with both cold and warm calibration; and 4) investigating calibration variability and dependence on geophysical parameters. One critical challenge in science applications of radiometer data is that coastal science products from radiometers have previously been largely unavailable due to land contamination. We therefore develop methods to correct for land contamination and derive coastal science products. This thesis addresses these challenges by developing their solutions and then applying them to the GPM mission and its radiometer constellation.PhDAtmospheric, Oceanic and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120728/1/johnxun_1.pd

    Vicarious Calibration of Global Precipitation Measurement Microwave Radiometers

    Full text link
    The vicarious cold calibration method of Ruf has been used to assess the calibration of the TMI, WindSat, SSM/I F13 and SSM/I F14 microwave radiometers using data from the GPM Inter-Calibration Working Group. Significant scan position dependent biases are seen for TMI (as large as 1 K) and for WindSat (as large as 5 K) – scan position dependent biases in SSM/I data were removed prior to processing. These biases are thought to be due to obstructions in the edge of scan field of view from the given instrument and its spacecraft. WindSat vertically polarized data also show a linear decrease in vicarious cold calibration brightness temperatures with scan position. SSM/I F13 and F14 vicarious cold brightness temperatures differ by an amount consistent with a ~.2 ° offset in their relative Earth incidence angles

    SATELLITE ATTITUDE ANALYSIS USING THE VICARIOUS COLD CALIBRATION METHOD FOR MICROWAVE RADIOMETERS

    Get PDF
    ABSTRACT A method for estimating the pitch and roll errors of a satellite with an onboard conical scanning microwave radiometer is described. The method makes use of the vicarious cold calibration algorithm which derives a stable cold brightness temperature (TB) over ocean. This cold TB is sensitive to the Earth Incidence Angle (EIA) of the radiometer. Given no pitch or roll errors, the EIA can be modeled as a function of the Earth radius and altitude of the satellite. Deviation from this EIA can then be used to estimate the pitch and roll errors. The pitch/roll algorithm is applied to the current spaceborne microwave radiometer WindSat to show its performance, and the results are compared to the derived pitch and roll of WindSat that are found using a different attitude analysis method

    Inter-satellite Microwave Radiometer Calibration

    Get PDF
    The removal of systematic brightness temperature (Tb) biases is necessary when producing decadal passive microwave data sets for weather and climate research. It is crucial to achieve Tb measurement consistency among all satellites in a constellation as well as to maintain sustained calibration accuracy over the lifetime of each satellite sensor. In-orbit inter-satellite radiometric calibration techniques provide a long term, group-wise solution; however, since radiometers operate at different frequencies and viewing angles, Tb normalizations are made before making intermediate comparisons of their near-simultaneous measurements. In this dissertation, a new approach is investigated to perform these normalizations from one satellite\u27s measurements to another. It uses Taylor\u27s series expansion around a source frequency to predict Tb of a desired frequency. The relationship between Tb\u27s and frequencies are derived from simulations using an oceanic Radiative Transfer Model (RTM) over a wide variety of environmental conditions. The original RTM is built on oceanic radiative transfer theory. Refinements are made to the model by modifying and tuning algorithms for calculating sea surface emission, atmospheric emission and attenuations. Validations were performed with collocated WindSat measurements. This radiometric calibration approach is applied to establish an absolute brightness temperature reference using near-simultaneous pair-wise comparisons between a non-sun synchronous radiometer and two sun-synchronous polar-orbiting radiometers: the Tropical Rain Measurement Mission (TRMM) Microwave Imager (TMI), WindSat (on Coriolis) and Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing System -II (ADEOSII), respectively. Collocated measurements between WindSat and TMI as well as between AMSR and TMI, within selected 10 weeks in 2003 for each pair, are collected, filtered and applied in the cross calibration. AMSR is calibrated to WindSat using TMI as a transfer standard. Accuracy prediction and error source analysis are discussed along with calibration results. This inter-satellite radiometric calibration approach provides technical support for NASA\u27s Global Precipitation Mission which relies on a constellation of cooperative satellites with a variety of microwave radiometers to make global rainfall measurements

    Microwave Radiometer Inter-Calibration: Algorithm Development and Application.

    Full text link
    Microwave radiometer inter-calibration is an essential component of any effort to combine measurements from two or more radiometers into one dataset for scientific studies. One spaceborne instrument in low Earth orbit is not sufficient to perform long-term climate studies or to provide measurements more than twice per day at any given location on Earth. Measurements from several radiometers are necessary for analyses over extended temporal and spatial ranges. In order to combine the measurements, the radiometers need to be inter-calibrated due to the instruments having unique instrument designs and calibrations. Inter-calibration ensures that consistent scientific parameters are retrieved from the radiometers. The development of a cold end inter-calibration algorithm is presented. The algorithm makes use of vicarious cold calibration, along with the double difference method, to calculate calibration differences between radiometers. The performance of the algorithm is characterized using data from current conical scanning microwave radiometers. The vicarious cold calibration double difference is able to sufficiently account for design differences between two radiometers including frequency, earth incidence angle, and orbital characteristics. An estimate of the uncertainty in the inter-calibration algorithm is given as a result of potential errors in the geophysical inputs and improper accounting of seasonal and diurnal variability. The vicarious cold calibration double difference method is shown to be a valid and accurate inter-calibration algorithm. Results are compared with calibration differences calculated using alternate algorithms and sufficient agreement is attained. Inter-calibration is shown to be necessary for achieving consistency in retrieved scientific parameters by using the vicarious cold calibration double difference method to inter-calibrate two radiometers that are then used to derive rain accumulations. Inter-calibration results in a significant improvement in the rain accumulation agreement between the radiometers. This validates inter-calibration algorithm development and shows that it has a positive impact on achieving consistency in scientific parameter retrievals.PhDAtmospheric, Oceanic and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107078/1/rakro_1.pd

    Polarimetric Microwave Radiometer Calibration.

    Full text link
    A polarimetric radiometer is a radiometer with the capability to measure the correlation information between vertically and horizontally polarized electric fields. To better understand and calibrate this type of radiometer, several research efforts have been undertaken. 1) All microwave radiometer measurements of brightness temperature (TB) include an additive noise component. The variance and correlation statistics of the additive noise component of fully polarimetric radiometer measurements are derived from theoretical considerations and the resulting relationships are verified experimentally. It is found that the noise can be correlated among polarimetric channels and that the correlation statistics can vary as a function of the polarization state of the scene under observation. 2) A polarimetric radiometer calibration algorithm has been developed which makes use of the Correlated Noise Calibration Standard (CNCS) to aid in the characterization of microwave polarimetric radiometers and to characterize the non-ideal characteristics of the CNCS itself simultaneously. CNCS has been developed by the Space Physics Research Laboratory of the University of Michigan (SPRL). The calibration algorithm has been verified using the DetMit L-band radiometer. The precision of the calibration is estimated by Monte Carlo simulations. A CNCS forward model has been developed to describe the non-ideal characteristics of the CNCS. Impedance-mismatches between the CNCS and radiometer under test are also considered in the calibration. 3) The calibration technique is demonstrated by applying it to the Engineering Model (EM) of the NASA Aquarius radiometer. CNCS is used to calibrate the Aquarius radiometer – specifically to retrieve its channel phase imbalance and the thermal emission characteristics of transmission line between its antenna and receiver. The impact of errors in calibration of the radiometer channel phase imbalance on Sea Surface Salinity (SSS) retrievals by Aquarius is also analyzed. 4) The CNCS has also been used to calibrate the Breadboard Model (BM) of the L-band NASA Juno radiometer. In order to cover the broad TB dynamic range of the Juno radiometer, a special linearization process has been developed for the CNCS. The method combines multiple Arbitrary Waveform Generator gaussian noise signals with different values of variance to construct the necessary range of TB levelsPh.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61741/1/jzhpeng_1.pd

    Global Precipitation Measurement (GPM): Unified Precipitation Estimation From Space

    Get PDF
    Global Precipitation Measurement (GPM) is an international satellite mission that uses measurements from an advanced radar/radiometer system on a Core Observatory as reference standards to unify and advance precipitation estimates through a constellation of research and operational microwave sensors. GPM is a science mission focusing on a key component of the Earth's water and energy cycle, delivering near real-time observations of precipitation for monitoring severe weather events, freshwater resources, and other societal applications. This work presents the GPM mission design, together with descriptions of sensor characteristics, inter-satellite calibration, retrieval methodologies, ground validation activities, and societal applications

    Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    Get PDF
    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earths surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements

    Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations

    Get PDF
    icrowave radiometry has provided valuable spaceborne observations of Earth’s geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observ- ing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsur- face at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500–1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under veg- etation canopies. However, the absence of significant spectrum re- served for passive microwave measurements in the 500–1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500–1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities
    corecore