2,695,236 research outputs found
Simulation of rod ejection accident byPARCS code
This paper describes reactor core model used for simulating REA. The model was designed in PARCS utilizing graphical interface SNAP. The data for model were given from benchmark NEACPR L-335. The PARCS model used integrated thermal hydraulic block for calculation. The results and solution is shown in the paper. Thermal hydraulic calculation can also be provided by external system code TRACE. The PARCS model is prepared to couple with TRACE model for giving more accurate calculation
Geosynthetic-encased stone columns: analytical calculation model
This paper presents a newly developed design method for non-encased and encased stone columns. The developed analytical closed-form solution is based on previous solutions, initially developed for non-encased columns and for non-dilating rigid-plastic column material. In the present method, the initial stresses in the soil/column are taken into account, with the column considered as an elasto-plastic material with constant dilatancy, the soil as an elastic material and the geosynthetic encasement as a linear-elastic material. To check the validity of the assumptions and the ability of the method to give reasonable predictions of settlements, stresses and encasement forces, comparative elasto-plastic finite element analyses have been performed. The agreement between the two methods is very good, which was the reason that the new method was used to generate a parametric study in order to investigate various parameters, such as soil/column parameters, replacement ratio, load level and geosynthetic encasement stiffness on the behaviour of the improved ground. The results of this study show the influence of key parameters and provide a basis for the rational predictions of settlement response for various encasement stiffnesses, column arrangements and load levels. The practical use of the method is illustrated through the design chart, which enables preliminary selection of column spacing and encasement stiffness to achieve the desired settlement reduction for the selected set of the soil/column parameters. (C) 2010 Elsevier Ltd. All rights reserved
Model Calculation of Effective Three-Body Forces
We propose a scheme for extracting an effective three-body interaction
originating from a two-nucleon interaction. This is based on the Q-box method
of Kuo and collaborators, where folded diagrams are obtained by differentiating
a sum of non-folded diagrams with respect to the starting energy. To gain
insight we have studied several examples using the Lipkin model where the
perturbative approach can be compared with exact results. Numerically the
three-body interactions can be significant and in a matrix example good
accuracy was not obtained simultaneously for both eigenvalues with two-body
interactions alone.Comment: 9 pages, Revtex4, 7 figs, submitted to PR
Direct Calculation of Thermodynamic Quantities for Heisenberg Model
The XXX Heisenberg model is studied at finite temperature. The free energy is
derived without recourse to Thermal Bethe Ansatz method and Quantum Transfer
Matrix method. The result perfectly agrees with the free energy derived by
Thermal Bethe Ansatz method. An explicit expression of the cluster expansion
coefficient in arbitrary order is presented for the first time.Comment: 26 page
Calculation of Superdiffusion for the Chirikov-Taylor Model
It is widely known that the paradigmatic Chirikov-Taylor model presents
enhanced diffusion for specific intervals of its stochasticity parameter due to
islands of stability, which are elliptic orbits surrounding accelerator mode
fixed points. In contrast with normal diffusion, its effect has never been
analytically calculated. Here, we introduce a differential form for the
Perron-Frobenius evolution operator in which normal diffusion and
superdiffusion are treated separately through phases formed by angular wave
numbers. The superdiffusion coefficient is then calculated analytically
resulting in a Schloemilch series with an exponent for the
divergences. Numerical simulations support our results.Comment: 4 pages, 2 figures (revised version
New Developments in MadGraph/MadEvent
We here present some recent developments of MadGraph/MadEvent since the
latest published version, 4.0. These developments include: Jet matching with
Pythia parton showers for both Standard Model and Beyond the Standard Model
processes, decay chain functionality, decay width calculation and decay
simulation, process generation for the Grid, a package for calculation of
quarkonium amplitudes, calculation of Matrix Element weights for experimental
events, automatic dipole subtraction for next-to-leading order calculations,
and an interface to FeynRules, a package for automatic calculation of Feynman
rules and model files from the Lagrangian of any New Physics model.Comment: 6 pages, 3 figures. Plenary talk given at SUSY08, Seoul, South Korea,
June 2008. To appear in the proceeding
Measurements of double-polarized compton scattering asymmetries and extraction of the proton spin polarizabilities
The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to extract the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the Δ(1232) region using circularly polarized incident photons and a transversely polarized proton target at the Mainz Microtron. Fits to asymmetry data were performed using a dispersion model calculation and a baryon chiral perturbation theory calculation, and a separation of all four proton spin polarizabilities in the multipole basis was achieved. The analysis based on a dispersion model calculation yields γE1E1=−3.5±1.2, γM1M1=3.16±0.85, γE1M2=−0.7±1.2, and γM1E2=1.99±0.29, in units of 10−4 fm4
- …
