
 
 
 

 
 
 
 
 

 
 

 
 

Jamova cesta 2 
1000 Ljubljana, Slovenija 
http://www3.fgg.uni-lj.si/ 

 
 

DRUGG – Digitalni repozitorij UL FGG 
http://drugg.fgg.uni-lj.si/ 

 
 
 

Ta članek je avtorjeva zadnja recenzirana 
različica, kot je bila sprejeta po opravljeni 
recenziji. 
 
Prosimo, da se pri navajanju sklicujte na 
bibliografske podatke, kot je navedeno: 

 
 

 
 
 

 
 
 

                         University  
                           of Ljubljana  
                                               Faculty of  
                                               Civil and Geodetic 
                                               Engineering 

 
 

Jamova cesta 2 
SI – 1000 Ljubljana, Slovenia 
http://www3.fgg.uni-lj.si/en/ 

 
 

DRUGG – The Digital Repository 
http://drugg.fgg.uni-lj.si/ 

 
 
 

This version of the article is author's 
manuscript as accepted for publishing after 
the review process. 
  
When citing, please refer to the publisher's 
bibliographic information as follows: 

 
 
 
Pulko, B., Majes, B., Logar, J. 2011. Geosynthetic-encased stone columns: Analytical 
calculation model. Geotextiles and Geomembranes 29,1: 29-39. DOI: 10.1016/j.geotexmem. 
2010.06.005.  

 
 
 
 
 

       Univerza 
v Ljubljani 

Fakulteta 
za gradbeništvo 
in geodezijo 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Repository UL FGG

https://core.ac.uk/display/12089198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

Geosynthetic-encased stone columns: Analytical calculation model 
 
Boštjan Pulko, Bojan Majes, Janko Logar 
 
Corresponding author: 
Boštjan Pulko  
University of Ljubljana, Faculty of Civil and Geodetic Engineering,  
Jamova 2, 1000 Ljubljana, Slovenia 
E-mail: bostjan.pulko@fgg.uni-lj.si 
Tel.: +386 1 4768523, fax: +386 1 4250681 
  
Bojan Majes 
University of Ljubljana, Faculty of Civil and Geodetic Engineering,  
Jamova 2, 1000 Ljubljana, Slovenia 
E-mail: bojan.majes@fgg.uni-lj.si 
Tel.: +386 1 4768522, fax: +386 1 4250681 
 
Janko Logar 
University of Ljubljana, Faculty of Civil and Geodetic Engineering,  
Jamova 2, 1000 Ljubljana, Slovenia 
E-mail: janko.logar@fgg.uni-lj.si 
Tel.: +386 1 4768526, fax: +386 1 4250681 
 
 
Abstract 
 
This paper presents a newly developed design method for non-encased and encased 
stone columns. The developed analytical closed form solution is based on previous 
solutions, initially developed for non-encased columns and for non-dilating rigid-plastic 
column material. In the present method, the initial stresses in the soil/column are taken 
into account, with the column considered as an elasto-plastic material with constant 
dilatancy, the soil as an elastic material and the geosynthetic encasement as a linear-
elastic material. To check the validity of the assumptions and the ability of the method 
to give reasonable predictions of settlements, stresses and encasement forces, 
comparative elasto-plastic finite element analyses have been performed. The agreement 
between the two methods is very good, which was the reason that the new method was 
used to generate a parametric study in order to investigate various parameters, such as 
soil/column parameters, replacement ratio, load level and geosynthetic encasement 
stiffness on the behaviour of the improved ground. The results of this study show the 
influence of key parameters and provide a basis for the rational predictions of settlement 
response for various encasement stiffnesses, column arrangements and load levels. The 
practical use of the method is illustrated through the design chart, which enables 
preliminary selection of column spacing and encasement stiffness to achieve the desired 
settlement reduction for the selected set of the soil/column parameters.  
 
Keywords: Soil improvement, Stone columns, Geosynthetic encasement, Settlement 
prediction, Elasto-plastic solution  
 



 2

1. Introduction 
 
Stone columns or granular piles are frequently used to stabilize soft clays and silts and 
loose silty sands with large amount of fines. For low-rise buildings, highway facilities, 
storage tanks, embankments, bridge abutments and other structures that can tolerate 
some settlements stone columns are one of the most frequently used methods of support 
due to their low cost, effectiveness and ease of installation. The beneficial effects of 
stone columns are increased stiffness, reduced settlements, increased time rate of 
settlements, increased shear strength and reduction of the liquefaction potential of soft 
ground (Barksdale and Bachus, 1983). As the construction and use of the conventional 
stone columns in very soft soil with low undrained shear strength are almost impossible 
due to insufficient lateral support of the soil, the problem can be solved by encasing the 
column material in geosynthetics. The foundation system initially introduced as 
geotextile encased columns (GECs) has been adopted successfully and is well 
established in engineering practice (Raithel and Kempfert, 2000; Raithel et al., 2002). 
Similar concepts based on geogrid encasement as a more robust and perhaps stiffer 
alternative to geotextile have more recently been introduced and investigated 
(Sivakumar et al., 2004, Malarvizhi and Ilamparuthi, 2007; Murugesan and Rajagopal, 
2006, 2007, 2010; Yoo and Kim, 2009; Araujo et. al., 2009; Gniel and Bouazza, 2009, 
2010) to demonstrate the effectiveness of geosynthetic encasement and to improve 
design methods. 
 
The available methods for the design of foundations resting on soft soil stabilised by a 
large number of end-bearing stone-columns can be classified as either approximate 
methods with important simplifying assumptions or sophisticated methods based on 
complex modelling using finite element method or homogenization techniques. Most of 
approximate analytical solutions assume infinitely wide, loaded area with end-bearing 
stone columns having constant diameter and spacing, where the stone column and the 
surrounding soil are treated in axial symmetric conditions. This approach is commonly 
known as a unit cell concept (Priebe, 1976; Aboshi et al., 1979) and has been adopted 
by several researchers for the analysis of traditional and encased stone columns. 
 
A number of methods are available for the analysis of traditional non-encased stone 
columns. First suggestions were based on elastic approach (Aboshi et al., 1979; Balaam 
and Booker, 1981). It was shown that elastic methods may easily overestimate the 
effects of stone columns on settlement reduction (Balaam and Booker, 1985). Therefore 
elasto-plastic analytical methods were introduced, where the problem was idealized by 
assuming that the stone column is in a triaxial stress state and perhaps yielding, that 
there is no shear stress at the stone-soil interface and that there is no yielding in the soil. 
These common assumptions have been implemented in a number of methods where 
traditional non-encased stone column is considered to be in a state of plastic equilibrium 
and under a triaxial stress state (Priebe, 1976; Van Impe and De Beer, 1983; Balaam 
and Booker, 1985; Van Impe and Madhav, 1992; Pulko and Majes, 2005, 2006). 
 
Not so many analytical methods have been developed for the analysis of encased stone 
columns. Where a large number of stone columns is used to enhance the ability of soft 
ground to support an embankment or a raft foundation, the design method presented by 
Reithel and Kempfert (2000) is probably the most popular and accepted one. The 
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method is based on the unit cell concept where the column is considered as rigid-plastic, 
with infinite modulus of elasticity, yield limit at the active state and plastic deformation 
at constant volume (zero dilatancy). The geosynthetic encasement is considered as a 
linear-elastic material and for the soil behaviour some assumptions of semi-empirical 
nature are made: the horizontal stresses in the soil are linearly proportional to the 
vertical stresses through preselected lateral stress coefficients. The guidelines for the 
design of geotextile encased columns presented by Murugesan and Rajagopal (2007) are 
also well known and accepted. In their method the bearing support from the soil is 
conservatively ignored and thus, the method focuses more on the performance of a stone 
column acting as a pile, with external load applied only on the column top and not on 
surrounding soil.  
 
The objective of this paper is to present an extension of approaches presented by 
Balaam and Booker (1985) and Reithel and Kempfert (2000) in a form of analytical 
closed-form elasto-plastic solution. The developed method takes into account elasto-
plastic behaviour of the column material with confined yielding according to the Rowe 
stress-dilatancy theory (Rowe, 1962) and gives reasonable prediction of improved 
ground behaviour for non-encased and encased stone columns.  
 
2. Calculation model 
 
If stone-columns are regularly distributed, a regularly shaped area around the stone-
column may be considered as a “unit cell”, consisting of stone-column and the 
surrounding soft soil in a zone of influence (Fig. 1). To simplify the analysis the zone of 
influence is approximated by a circle with a diameter ed  equal to 1.05s, 1.13s and 
1.29s, for triangular, square or hexagonal patterns, respectively, where s  is the column 
spacing. The column spacing ratio is defined as ce dd / . The ratio between the area of 
column cA and the area of the zone of influence eA  represents the replacement ratio 

2)( ececr ddAAA == . 
 

Fig. 1. 
 
When loaded, the improved soil will initially deform under undrained conditions, 
whereas the high drainage capacity of the column material ensures that it deforms 
almost under drained conditions. If the soil is considered incompressible, then the 
immediate settlement is negligible compared to the total final settlements (Balaam and 
Booker, 1985) and will not be considered in the paper.  
 
Beside the “unit cell” concept the following assumptions were taken into account to 
simplify the problem and to obtain the closed form solution: 
- The settlements on the top of the column and the soil under rigid load are equal. Thus, 
no shear along the soil/column interface is taken into account. 
- The top and bottom planes of the unit cell are perfectly smooth. 
- The settlements in the bearing strata are neglected. 
- The soil remains elastic throughout the range of applied load. 
- The column material behaves as elastic-plastic material satisfying the Mohr-Coulomb 
yield criterion with constant dilation angle ψ .  
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- Geosynthetic material behaves as elastic material with constant deformation modulus. 
- First-order strain theory is taken into account.  
 
2.1. Initial elastic response 
 
For very small vertical distributed load Aq  [kN/m2] the initial response of the soil and 
the column will be elastic. The elastic solution of the “unit cell” for the conventional 
non-encased stone column was presented by Balaam and Booker (1981) and can easily 
be extended by taking into account the geosynthetic encasement.  
 
Under uniform distributed load Aq  applied through rigid raft the end-bearing stone-
column and the surrounding soil will undergo the same vertical displacement zu  and 
radial displacement ru . Thus, at the soil−column interface no slippage is expected 
between the soil and the granular material. The vertical and radial strains of the stone-
column are defined as: 

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

=
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⎬
⎫

cr

z

r

z
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ε
ε

 (1) 

where H is the height and cr  the radius of the stone (granular) column. 
 
The soil surrounding the stone-column can be analysed as a thick cylinder using 
equation relating vertical and radial strains, zε  and rε  at the soil–column interface with 
vertical and radial stresses in the soil, zsσ  and rsσ  (Poulos and Davis, 1974):  
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where oedE  is the oedometer modulus of the soil and C1, C2 and C3 constants defined as: 
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where sν  is Poisson’s ratio of the soil and ( )ssk νν −= 1/0 . 
 
The stress-strain relationship for the stone-column under triaxial state is given by:  
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where zcσ  and rcσ  represent vertical and horizontal stresses in the stone-column, 
respectively, and cν  is Poisson’s ratio of the column. 
 
In contrast to the non-encased column, where the horizontal support of the soil rsσ  is 
equal to the horizontal pressure in the column rcσ , the radial stress difference rσΔ  
must be taken by the geosynthetic encasement. The hoop force RF  in the elastic 
encasement, which provides additional lateral support for the column, thus becomes: 

( ) rcrsrccrR JrrF εσσσ =−=Δ=  (5)  
where J  is the stiffness of the encasement. 



 5

 
Using the above stress-strain relationships (Eq. 2, 4, 5 and 6) and the equilibrium 
equation: 

)1( rzsrzcA AAq −+= σσ  (6) 

the system of equations can be solved to obtain the elastic vertical strain el
zε  caused by 

the applied load Aq :  

FAAGAG
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−−−+++

=   (7)  

where F is a constant defined as:  
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where T  is a dimensionless stiffness of the encasement defined as: 

coed rE
JT =  (9) 

sλ , sG and cλ , cG  are Lamé’s parameters of the soil and the column, respectively, and 
can be calculated as:  
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=

E
, 

)1(2 ν+
=

EG  (10) 

where E  and ν refer to Young’s modulus and Poisson’s ratio. 
 
For the calculated vertical strain el

zε  (Eq. 7) the radial elastic strain el
rε  and stresses in 

the column and soil become: 
el
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r Fεε =  (11) 
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with the hoop force RF  in the encasement: 
el
zR FJF ε=  (13) 

 
The settlement reduction factor elβ , which is generally used as a measure for the 
improvement of the ground, is defined as the ratio of settlements or vertical strains of 
the treated to the untreated ground under widespread load: 
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The stress concentration factors el
cη  and el

sη , defined as the ratio between the vertical 
stresses in the column/soil and load Aq , are given by: 
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2.2. Elasto-plastic solution 
 
From the elastic response of the unit cell it can be shown that significant yielding of the 
stone column may occur due to high stress ratio, but little yield in the clay. According to 
Balaam and Booker (1985) and Abdelkrim and Buhan (2007) a simplified calculation 
procedure may be adopted, which assumes that the soil remains elastic, the settlement 
evolution being governed by the progressive yield of the column as loading increases. 
Thus, elastic response of the soil will be assumed throughout the range of applied load. 
 
Let us consider a thin horizontal slice of the “unit cell” at a selected depth z  before any 
load is applied on the ground surface. Let the effective vertical stress in the column at 
the depth z  be equal to zccs γσ = , where cγ  is the effective unit weight of the column 
material. The initial lateral resistance can be estimated by zK sinirc γσ = , where iniK  is 
the initial lateral pressure coefficient at the soil/column interface after the installation of 
columns. The coefficient iniK  depends on the soil conditions, column spacing and the 
method of column installation. In very soft soils, for large column spacings and when 
replacement installation methods are used, the value of iniK  will be close to at rest value 

0k . In opposite cases and especially when displacement installation methods are 
employed, iniK   can be significantly higher. In order to assure the elastic stress state for 
the column in its initial state (before loading), the value of iniK  should satisfy the 
condition )/( pcscini KK γγ>  (see Eq. 17).  
 
For the perfectly elastic-plastic column material, satisfying the Mohr-Coulomb yield 
criterion, the yield condition for the stone column under applied load is given by the 
expression: 

pc
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 (17) 

where zcσΔ  and rcσΔ  are elastic stress increments caused by the applied yield load yq  
(Eq. 7 and 12) and cϕ  is the peak friction angle of the column material. Equation 17 can 
be rearranged using Eq. 7 and Eq. 11 to obtain the yield load yq  for the selected depth 
z : 

zCzqq s
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with:  
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where μ  represents the ratio of the effective column unit weight to the soil unit weight 

sc γγμ = . The elastic vertical deformation y
zε  under yield load yq  (Eq. 7) now 

becomes: 
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If the surface load Aq  is greater than the yield load yq  for the selected depth z , the 
column will yield and the yield criterion must also be satisfied for the column vertical 
and radial stress increments, p

zcσΔ  and p
rcσΔ , caused by the load difference 
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where index p denotes the share of stresses and strains caused by load difference pq .  
 
For the yielding Mohr-Coulomb elastic-plastic material with constant dilation angle ψ , 
the deformation ratio in triaxial conditions is defined by Rowe (1962): 
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Equation 22 provides a basis for the incremental stress-strain relationship, which was 
presented by Balaam and Booker (1985) in the form:  

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎭
⎬
⎫

⎩
⎨
⎧

Δ
Δ

p
r

p
zpcpc

p
rc

p
zc

K
KKK

D
ε
ε

σ
σ

ψ

ψ

2
2

 (23) 

where D is the material constant: 
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For the soil, which remains elastic, the stress-strain relationship presented by Poulos 
and Davis (1974) (Eq. 2) can be rearranged to obtain:  
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Finally, the radial stress difference at the soil-column interface p

rs
p
rc

p
r σσσ Δ−Δ=Δ , 

which must be taken by the geosynthetic encasement, can be expressed as: 
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By adopting the same kind of notation as in Section 2.1., the stress-strain relationships 
(Eq. 23, 25 and 26) and the equilibrium equation in the form:  
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are solved to obtain analytical closed-form solution for stresses and strains caused by 
the vertical load difference pq : 

( ) { }p

oed

oed

oed
p

r

p
z q

EkDK
TCED

EC ⎥
⎦

⎤
⎢
⎣

⎡
−

++
=

⎭
⎬
⎫

⎩
⎨
⎧

0

2

5

21
ψε

ε
 (28) 



 8

( )[ ]
( ) { }pp

p
rc

p
zc q

TCKk
TCKkK

C
D

⎥
⎦

⎤
⎢
⎣

⎡
++
++

=
⎭
⎬
⎫

⎩
⎨
⎧

Δ
Δ

20

20

5 2
2

ψ

ψ

σ
σ

  (29) 

( ) ( ) { }p

oed

oed
p
sc

p
sc q

TkEDkKDC
TCEKCD

C ⎥
⎦

⎤
⎢
⎣

⎡
++

+++
=

⎭
⎬
⎫

⎩
⎨
⎧

Δ
Δ

002

31

5 2
21

ψ

ψ

σ
σ

  (30) 

with: 
( )( ) ( )( ) ( )( ){ }02135 2211 kTCKKAKCADTCAEC pRRRoed ++++−++−= ψψ  (31) 

 
With the vertical strain of the untreated soil estimated as: 
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the settlement reduction factor pβ  for the elasto-plastic response of the yielding 
column becomes: 
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and similar to the elastic solution stress concentration factors p
cη  and p

sη can be 
obtained as: 
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2.3. Complete elasto plastic response of the unit cell 
 
The complete elasto-plastic response of the unit cell under load is obtained as a 
combination of elastic and elasto-plastic solutions. Under distributed load Aq  the yield 
(bulging) of the column will start just below the ground surface within the zone with the 
least lateral resistance (Murugesan and Rajagopal, 2006; Gniel and Bouazza, 2009). For 
a given load the yield of the column will reach the final yield depth yz  (Eq. 18):  
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Once the yield depth is determined, the vertical deformation )(zzε  can be calculated for 
two distinctive zones: for the depths yzz <<0 , where distributed load Aq  is greater 
than yield load )(zq y  and for the depths yzz ≥ , where the column remains in the 
elastic state. Thus, the total vertical deformation )(zzε  is obtained as a combination of 
elastic and elasto-plastic solutions:  
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Similarly, the vertical stress at the selected depth z in soil ( s=α ) and column ( c=α ) 
can be expressed in terms of stress concentration factors el

αη  and p
αη : 
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and the circumferential force RF  in the geosynthetic encasement as: 
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It is worth noting that the soil and column material properties can also be introduced as 
depth or stress dependent. In this case the final settlement must be obtained numerically, 
as opposed to the analytical solution for the constant depth independent material 
properties, where the final settlement of the treated ground is obtained with the 
integration of vertical strains over the length of column H  for three distinctive cases 
according to the calculated yield depth yz : 
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If the settlement of the treated ground zu  is divided by the total settlement of the 
homogeneous untreated ground, which can be for sufficiently large load area estimated 
as: 

oed

A
z E

Hqu =0,  (41) 

then, after the integration of Eq. 40, the final settlement reduction factor β  becomes: 
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As the settlement reduction factors elβ  (Eq.13) and pβ  (Eq. 33) and 4C (Eq. 19) are 
constant for a given set of material, geometrical and initial stress data, the final 
settlement reduction factor β  for a yielding column (Eq. 42) results in a linear 
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combination of elastic and plastic solutions governed by the dimensionless load ratio 
)/( sA Hq γ . Similar effect of dimensionless load ratio )/( sA Hq γ  on settlement reduction 

was presented for non-encased columns (Balaam and Booker, 1985) and is further 
discussed in Chapter 4.  
 
Similarly, the ultimate stress concentration factor for soil ( s=α ) and column ( c=α ) 
can be expressed as: 
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From Eq. 43 it is obvious that for the yielding column the stress concentration factors 
for the soil sη  and the column cη are not constant over the column depth. Thus, the 
settlement reduction factor β  can not be easily expressed in terms of stress 
concentration factors.  
 
For the homogenous soil and column constant 4C , settlement reduction factors ( elβ , 

pβ ) and stress concentration factors ( el
αη , p

αη ) are load/depth independent and can be 
calculated easily for a given set of material parameters and column distribution (“?see 
Electronic Annex 1 in the online version of this article”).  
 
Another important feature of the method is that it is valid also for ordinary non-encased 
stone columns, if geosynthetic encasement is neglected. Numerically it is done simply 
by adjusting the encasement stiffness to zero value ( 0=J ).  
 
3. Model validity 
 
To test the validity of the proposed method, elasto-plastic finite element analyses were 
performed by using commercial Plaxis 2D finite element program (Brinkgrave, 2002). 
Axi-symmetric model was used for the circular “unit cell” and 15-node triangular 
elements were selected to model the soil and column material. Along the axis and outer 
border of the unit cell radial deformations were restricted but settlements were allowed. 
The base and the foundation were assumed as perfectly rough, as earlier work presented 
by Balaam and Booker, 1981, showed that even for a very shallow layer ( cdH / = 1) the 
surface vertical displacement is almost insensitive to the imposed boundary condition at 
the top and the bottom of the model. A raft with high flexural stiffness was modelled at 
the surface to simulate the stiffness of the imposed uniform load and to match the 
assumptions of the analytical method. Furthermore, the drained conditions were used 
and the creep of geosynthetic was not considered in order to stay within the assumptions 
of the analytical method. 
 
Special membrane elements with elastic axial stiffness EA but with no bending stiffness 
were used to model the geosynthetic encasement. These membrane elements can only 
sustain tensile forces but no compression and are capable to model the encasement. No 
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special shear (interface) elements were used along column-encasement and soil-
encasement interfaces. 
 
More exact elasto-plastic numerical analyses were used intentionally, not to impose any 
assumptions about the final stress state in the soil or in the column and to verify some 
assumptions of the presented method (e.g. soil remains in elastic state under loading). 
Consequently, the soil and the column material were both treated as perfectly elasto-
plastic materials according to the Mohr-Coulomb yield criterion with non-associated 
flow rule. 
 
The analyses were made for two different spacings ce dd / = 2 and 5 with respective 
replacement ratios %25=RA  and 4%. For the economic and technical feasibility, such 
replacement ratios are usually considered as limit values.  
 
The column length to diameter ratio cdH / = 10, the modulus ratio sc EE / = 30, the 
effective unit weight ratio 5.1/ == sc γγμ , the column friction angle cϕ  = 40° and the 
soil friction angle sϕ = 25° were adopted for the analyses. Poisson’s ratios 3.0== sc νν  
were assumed for the soil and column material. The soil was treated as non-dilatant 
( 0=sψ ) and the column as non-dilatant ( 0=cψ ) or as dilatant material ( 15=cψ ).  
Dilation angle 0=cψ  was assumed as a conservative assumption, which gives the 
largest settlements (Fig. 12) and also means the maximum deviation from the elastic 
response. Alternatively,  15=cψ was assumed to validate the method for the effects of 
dilation. The initial stresses were generated according to the 0K  procedure for the 
assumed value of soil stress coefficient 8.0=iniK . 
 
High load level was selected deliberately to test the ability of the method to give 
reasonable predictions of settlements, stresses and encasement hoop forces for large 
loads/deformations. Thus, the maximum applied load in the analyses oedA Eq 20.0=  
was selected, causing the vertical deformation of the untreated ground in the order of 
20%. The maximum dimensionless load factor considered in the analysis was 

)( sA Hq γ = 2.0 
 
For the elastic geosynthetic encasement a dimensionless stiffness T, in which the 
encasement stiffness J  is normalized by oedometer modulus oedE  of soil and column 
radius cr  (Eq. 9), was used in the analyses. Non-encased stone columns with 0=T  and 
encased stone columns with four different dimensionless stiffnesses =T 2.5, 5, 10 and 
15, were analyzed, covering a broad range of suitable geosynthetic products and soil 
conditions. 
 
The above parameters were considered as a combination of data which would 
thoroughly test the validity of the assumptions, regularity and accuracy of the presented 
method.  
 

Fig. 2. 
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Figures 2 and 3 show the comparison between the results of finite element method 
(FEM) and the presented analytical method for the selected parameters and non-dilatant  
column material ( 0=cψ ). The normalized value of the calculated settlement 

)/( 2
soedz HEu γ  and average vertical strain zε  is depicted in relation to the normalized 

load ratio )/( sA Hq γ , as it is obvious from Eq. 42 that for a given set of geometrical and 
material data the settlement reduction factor β  depends only on the load level 

)/( sA Hq γ . Similar comparison of results is shown in Fig. 4 for the dilatant column 
material ( 15=cψ ) and two dimensionless stiffnesses =T 2.5 and 10. The data for the 
untreated soil were calculated according to one-dimensional theory and checked with 
the finite element analysis. 
 

Fig. 3. 
 

The maximum difference between the settlements according to both methods was found 
to be in the order of 2.5% of the final settlement of untreated ground. For high 
encasement stiffness ( 5>T ) the difference between calculated settlements was even 
lower, usually well below 1.0%. When dilation of the column was taken into account 
( 15=cψ ), the results from both methods almost coincide.  
 

Fig. 4. 
 
The comparison of the calculated column radial deformations along the soil/column 
interface for column spacing ratio 5/ =ce dd and for various load levels is shown in 
Figure 5. The calculated radial deformations, which are directly related to the 
encasement hoop forces ( rR JF ε= ), are in close agreement with the average values of 
radial deformations calculated with finite element analyses, although some variation of 
the radial deformations can be observed as a consequence of column yield and strain 
localization in the finite element analyses.  
 

Fig. 5. 
 
Although in the proposed analytical solution the soil is considered as an elastic material 
and the shear stresses along the column-soil interface are neglected, the calculated 
settlements are in very good agreement with the finite element results throughout the 
applied load. As almost no yielding was found in the soil, the results are in line with the 
findings presented by Balaam and Booker (1985), Abdelkrim and Buhan (2007) and 
Murugesan and Rajagopal (2006), i.e. that a simplified calculation procedure may be 
adopted, which assumes that the soil remains elastic, the settlement evolution being 
governed by the progressive yield of the column as loading increases. 
 
The results clearly indicate the validity of the assumptions and ability of the method to 
give good predictions of settlements, stresses and encasement forces for the encased and 
non-encased stone columns. Thus, the method will be used in a parametric study to 
investigate the influence of various parameters, such as soil/column parameters, 
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replacement ratio, load level and stiffness of geosynthetic encasement, on the behaviour 
of the improved ground.  
 
4. Parametric study 
 
In addition to the soil and column material properties, such as modulus ratio sc EE / , 
friction angle of the column material cϕ , dilation angle ψ  and Poisson’s ratios cν  and 

sν , the most important parameters affecting the behaviour of the stabilized ground are 
column spacing ratio ce dd / , encasement stiffness J , dimensionless load factor 

)( sA Hq γ  and initial lateral earth pressure coefficient iniK .  
 
The same basic material and geometrical data as for the validation analyses were 
adopted for the parametric study. Individual data were varied to show the effect of the 
most important input data on the settlement reduction.  
 

Fig. 6. 
 

The effects of column spacing, load factor and geosynthetic stiffness on settlement 
reduction factor β  are shown in Figures 6, 7 and 8. The column spacing ratio 

ce dd / and the dimensionless encasement stiffness T  have a dominating effect on the 
settlement reduction. Increasing the column diameter and decreasing the spacing 
between them, thereby increasing the replacement ratio RA , leads to significant 
reduction of settlements as compared to the untreated ground.  
 

Fig. 7. 
 

Fig. 8. 
 

The beneficial effect of the encasement on the settlement reduction is clearly evident. 
Increased encasement stiffness reduces radial deformations and provides additional 
lateral support for the column, which consequently takes more load and increases the 
stiffness of the stabilized ground. However, it should be noted that the beneficial effect 
of the encasement stiffness decreases with the increasing column radius cr  and with the 
increasing stiffness of the soil. Therefore, the dimensionless stiffness T  is more 
appropriate for the proper selection of the geosynthetic encasement than its tensile 
modulus by itself. 
 
The effect of dimensionless-load factor )( sA Hq γ  is also important, as it affects the 
unit cell response and especially the column yield. The settlement reduction factor β  
(Eq. 42) is a linear combination of elastic and elasto-plastic solutions elβ and 

pβ governed by the dimensionless load factor )( sA Hq γ . If the column is long and the 
applied load is small compared to the effective stresses at the column bottom, then most 
of the column will stay in the elastic state, thus having a significant effect on the 
settlement reduction with the final settlement reduction factor elββ ≈ . As the load 
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increases, the column yields and plastic deformations dominate over the elastic ones. 
Comparisons of the results given in Figures 6, 7 and 8 shows that for higher loads the 
settlement reduction factor β  quickly approaches to pβ . Thus, for the load factors 

1)( >′sA Hq γ  only the elasto-plastic part of the solution can be used as a conservative 
estimate of final settlements. 
 
Another interesting feature of the method is its ability to predict the behaviour of the 
stabilized ground irrespective of the spacing ratio ce dd / . For the theoretical 100% 
replacement of the soil ( 0.1/ =ce dd ) the calculated settlement reduction factor β  
becomes equal to soil modulus ratio cs EE / , while for zero replacement it becomes 
equal to unity irrespective of the encasement stiffness. This is clearly shown in Figures 
6, 7 and 8, where for 30/ =sc EE  the calculated settlement reduction factor β  
approaches to the value of 30/1 , as the column spacing ratio decreases to unity. As 
expected, no column yield occurs under such theoretical condition and the calculated 
settlement is the same as obtained from the one-dimensional theory for thirty times 
stiffer material.  
 
In Figure 9 the settlement reduction factor β  is plotted against the dimensionless load 
factor )( sA Hq γ  for modulus ratios =sc EE / 20, 30 and 40 for encasement stiffness T 
= 0, 2.5 and 10. The loss of stiffness with increasing load is most evident for the non-
encased columns with very high modulus ratio. With high modulus ratio the column 
takes greater proportion of the load, as long as it remains in the elastic state. Upon 
yielding, the deformation process is not longer controlled by the stiffness of the column 
and as the load increases the initial influence of the modulus ratio on the settlement 
reduction becomes negligible. The loss of stiffness is therefore most evident for non-
encased columns, where relatively low load is sufficient to cause the column to yield. 
For relatively weak encasements ( 5.2=T ) similar reduction of stiffness with the 
increasing load can be observed, although not so clearly evident. As the encasement 
becomes stiffer, the column yield resistance increases due to the additional lateral 
support and the loss of stiffness with increasing load becomes less evident.  
 

Fig. 9. 
 

In Figure 10 the effect of column friction angles ( =cϕ 35°, 40° and 45°) and 
encasement stiffness ( =T  0, 2.5 and 10) on settlement reduction is shown. It is obvious 
that the loss of stiffness with the increasing load is less severe for the column material 
having a higher friction angle and stiffer encasement. The beneficial effect of higher 
friction angle is most obvious for non-encased stone columns and tends to decrease with 
increasing encasement stiffness. 
 

Fig. 10. 
 

Fig. 11. 
 
As the confining generated in the encased columns is generally higher than in non-
encased columns (Murugesan and Rajagopal, 2006), the effect of initial lateral stresses 
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in the soil/column interface was also considered in the parametric study. Initial radial 
stresses in the “unit cell” depend on the stone-column installation technique and soil 
properties and are often assumed on the basis of engineering experience. To show the 
effect of lateral stress coefficient iniK  on the settlement reduction factor β , parametric 
calculations were made by adopting iniK  = 0.7, 0.8 and 0.9. The results are shown in 
Figure 11. The positive effect of initial radial stresses on the settlement reduction is 
clearly indicated for non-encased columns under relatively small load 
( )0.1)( <sA Hq γ . For encased columns the beneficial effect of initial radial stresses 
decreases with increasing encasement stiffness and load. This occurs because the radial 
stresses at soil/column interface generated by high loads are far higher than the initial 
radial stresses, which are therefore not very important for the final column stress state 
and have little impact on the behaviour of the stabilized ground. With stiffer encasement 
the ratio between generated and initial stresses in the column increases even more and 
the beneficial effect of the initial stresses on the performance becomes almost 
negligible, as shown in Fig. 11. 
 

Fig. 12. 
 
Another positive effect of the column encasement is that it allows better densification of 
the column material and thus higher peak shear strength and higher dilation angle of the 
column material. The effect of dilation angle ψ  is shown in Fig. 12. The dilatancy 
increases stiffness of stabilized ground because of the volume increase of the column 
material during yield. The effect of dilatancy is, as expected, more pronounced at higher 
loads when the column yields over the entire length and decreases as the encasement 
becomes stiffer. However, it should be noted that post peak behaviour of the column 
material is not taken into account and for the deformations far beyond the deformations 
at peak shear strength it is unrealistic to expect that the material will retain its ability to 
increase volume. Thus, the selection of the dilation angle should always be made in 
accordance with the actual behaviour of the column material within the range of 
expected deformations. When in doubt, the assumption that stone column material is 
non-dilatant ( 0=ψ ) will generally lead to conservative predictions of settlements. 
 
The results presented in Figures 7 to 12 show that for given properties of soil and 
column material the most significant reduction of settlements occurs when the columns 
are closely spaced, the tensile modulus of the encasement is high and the load level is 
low. 
 
5. Design charts 
 
When designing stone columns in engineering practice, one of the main objectives is to 
reduce settlements to the acceptable level. For given material data and load the 
reduction of settlements can by enhanced in two ways: by reducing the column spacing 

ce dd /  and therefore increasing the replacement ratio RA  or by increasing the 
encasement stiffness J . The proposed method allows for the generation of the design 
charts which enables quick preliminary selection of appropriate column spacing or 
encasement stiffness for the desired settlement reduction. 
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For the basic set of material data ( 30/ =sc EE , 40=cϕ , 0=ψ , 5.1=μ , 8.0=iniK ) 
such a design chart is shown in Figure 13. Several sets of lines are depicted for different 
settlement reduction factors 7.02.0 −=β  and load levels 5.0)( =sA Hq γ  and 2.0, to 
show the interdependence of column spacing ratio ce dd /  and dimensionless 
encasement stiffness T  on the reduction of settlements. As shown in Figure 13, the 
need for stiffer encasement rapidly increases for tightly spaced columns and when low 
settlement reduction factor β  is desired. Obviously, by increasing the spacing ratio 

ce dd /  the loss of overall stiffness is more severe for tightly spaced columns and 
therefore very stiff encasement is needed to retain the same settlement reduction. The 
effect of the load ratio )( sA Hq γ  on the settlement reduction and thus on column 
spacing and encasement stiffness is also clearly indicated. As the load increases, the 
demand for stiffer encasement is more pronounced for tightly spaced columns and when 
high settlement reduction is desired. 
 

Fig. 13. 
 
6. Comparison to other methods 
 
The results from the proposed method were compared with the analytical method 
proposed by Reithel and Kempfert (2000), which is probably the most popular and 
accepted method in engineering practice. The analytical method is based on the same 
unit cell concept, with the soil and geosynthetic encasement considered similarly as 
linear-elastic materials.  
 
In the analysis presented by Reithel and Kempfert (2000) the column material is 
considered as rigid-plastic material, with infinite modulus of elasticity, yield limit at the 
active state and plastic deformation at constant volume (zero dilatancy), as opposed to 
the presented method, where the column is considered as a dilatant elasto-plastic 
material. The second main difference is the adoption of second-order strain theory as 
opposed to the first-order strain theory adopted in the presented method. 
 

Fig. 14. 
 

Although the number of input parameters for both methods is not the same, the 
comparison of the predicted settlements can easily be made for the basic material and 
geometrical data previously adopted for the validation analyses ( 30/ =sc EE , 40=cϕ , 

0=ψ , 5.1=μ , 3.0== csv ν , 43.00 =k , 8.0=iniK ). Another set of calculations was 
made according to the proposed method by adopting very high modulus for the column 
material ( 3000/ =sc EE ) and Poisson’s ratio 5.0≈cν  to compare the results for the 
case of almost incompressible column with those obtained by Reithel and Kempfert’s 
method (2000). 
 

Fig. 15. 
 



 17

The predicted settlement reductions are plotted for different encasement stiffnesses 
( 0=T , 2.5 and 15) and varying spacings ce dd /  for two load levels 5.0)( =sA Hq γ  
and 2.0 in Figures 14 and 15, respectively.  
 
For almost incompressible column material with high modulus ratio ( 3000/ =sc EE ) 
the results from both methods almost coincide. For low load levels ( 5.0)( =sA Hq γ ) 
the results coincide perfectly, while for higher load levels 0.2)( =sA Hq γ  small 
differences appear, which can be attributed to the different orders of strain theory 
applied in both methods.  
 
However, results from both methods can differ significantly when the compressibility of 
the column material is taken into account. As would be expected, the assumption of 
incompressibility of the column material results in the overestimation of settlement 
reduction, particularly for high encasement stiffness. For the non-encased columns the 
differences in results from both methods are small, but they tend to increase as the 
encasement stiffness increases and as the deformation modulus of the column cE  
decreases. This occurs because the higher the encasement stiffness, the higher the 
portion of the vertical load carried by the column before it yields and thus the higher the 
accumulated elastic column deformations caused by stress concentration. In the non-
encased columns the stress level at yield is too low to generate any significant volume 
change. Thus, similar results are obtained from both methods. On the other hand, for the 
encased columns additional lateral support is provided and the column is able to carry 
more vertical load. Although it yields at the same ratio between vertical and radial 
stresses, the overall stress level at yield is much higher and so are the accumulated 
elastic deformations during the load increase. Thus, the incorporation of compressibility 
and dilatancy of column material into the presented closed-form solution represents 
important improvement for the prediction of load settlement response of the non-
encased and encased stone columns reinforced ground. 
 
7. Conclusions 
 
A simple and effective analytical closed-form solution for the analysis of non-encased 
and encased stone column reinforced ground is presented. The regularly spaced end-
bearing stone columns and the surrounding soil are modelled as a unit cell, consisting of 
elastic soil, elasto-plastic Mohr-Coulomb column material and elastic geosynthetic 
encasement. The dilation of the column material according to the Rowe stress-dilatancy 
theory is directly incorporated into the method. 
 
The comparisons with finite element analyses have shown the ability of the proposed 
method to yield good predictions of the behaviour of encased and non-encased stone 
columns reinforced ground. Based on the method characteristics and comparative finite 
element analyses the following conclusions are made: 
- The comparative study shows that the model assumptions are valid.  
- The proposed method is able to give predictions of settlements, stresses in soil and 
column and forces in encasement in a very close agreement with the elasto-plastic finite 
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element analyses. For relatively stiff encasement ( )5>T the calculated settlements 
almost coincide with the finite element results. 
- For homogenous soil conditions a simple closed-form solution is obtained for the 
prediction of the effects of stone-columns on settlement reduction, stresses in the soil 
and column and geosynthetic forces, which can be easily used in engineering practice. 
- The method is suitable for non-encased and encased stone columns. 
- The method is capable to predict the behaviour of uniformly loaded stabilized ground 
irrespective of the spacing ratio ce dd / . For the theoretical 0% and 100% soil 
replacement the method generates results consistent with the one-dimensional theory. 
- In general, the method can also be used for non-homogeneous soil conditions and for 
partially encased stone columns. For such conditions the calculation must be done in the 
incremental form or numerically. 
 
Based on parametric study where the influences of the material properties, column spacing and 
encasement stiffness are taken into account, further conclusions are made: 
- Most important parameters affecting the behaviour of stabilized ground are column spacing 
ratio ce dd / , dimensionless encasement stiffness )/( coed rEJT = , peak friction angle of the 
column material cϕ , dilation angle of the column material ψ , modulus ratio sc EE /  and load 
level )./( sA Hq γ  
- The selection of encasement stiffness J should be made in relation to the column 
diameter, soil stiffness and column spacing.  
- Dilation of the column material has a beneficial effect on the settlement reduction and 
should be considered in the design. For the conservative predictions the dilation of the 
column material can be neglected by adopting 0=ψ .  
- For high load levels ( 2)/( >sA Hq γ ) the elastic part of the solution becomes 
negligible and only elastic-plastic part of the solution can be used conservatively to 
simplify the analytical method even further.  
 
Appendix. Notation 
 
The following symbols are used in this paper: 

cA , eA  = area of column and unit cell (influence area); 
Ar = replacement ratio; 
C1, C2, C3, C4,, C5 =  material/geometrical constants; 
D  = material constant; 

cd  = diameter of stone-column; 

ed  =  diameter of influence area;  

oedE  =  oedometer modulus of soil; 

αE  =  elastic modulus of soil ( s=α ) or column ( c=α ); 
F  =  material/geometrical constant; 

αG  =  shear modulus of soil ( s=α ) or column ( c=α ); 
J  =  geosynthetic encasement stiffness; 
H  = column height; 

0k  = coefficient of earth pressure at rest; 
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iniK  = initial lateral pressure coefficient after the installation of the 
columns; 

pcK  =  passive earth pressure coefficient;  

ψK  =  dilation constant; 

Aq  =  applied vertical distributed load; 
pq  =  load difference; 
yq  =  yield load; 

cr  = radius of stone-column; 

er  =  radius of influence area; 
s  = stone-column spacing; 

RF  = encasement hoop force; 
T  =  dimensionless encasement stiffness; 

ru , zu  =  radial and vertical displacement; 
z  =  depth; 
β , elβ , pβ  =  settlement reduction factors; 

rε , zε  =  radial and vertical strain; 
el
rε , el

zε  =  elastic radial and vertical strain; 
p

rε , p
zε  =  plastic radial and vertical strain; 

αγ  = effective unit weight of soil ( s=α ) or column ( c=α ); 
el
αη , p

αη  = stress concentration factors of soil ( s=α ) or column ( c=α ); 

cϕ  =  peak friction angle of column material; 

αν  =  Poisson’s ratio of soil ( s=α ) or column ( c=α );  

αλ  =  Lame’s parameter of soil ( s=α ) or column ( c=α );  
μ  =  effective unit weight ratio;  

ασ r , ασ z  = radial and vertical stress in soil ( s=α ) or column ( c=α ); 
ασ rΔ , ασ zΔ  = radial and vertical stress increase in soil ( s=α ) or column 

( c=α ); 
p
rασΔ , 

p
zασΔ  = plastic radial and vertical stress increase in soil ( s=α ) or 

column ( c=α ); 
rσΔ  = radial stress difference; 

ψ =  dilation angle. 
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Figure captions: 
 
Fig. 1: Basic features of the model based on regular patterns of stone-columns.  
Fig. 2. Comparison between finite element analysis and analytical method 
( 0.2/ =ce dd , 0=cψ ). 
Fig. 3. Comparison between finite element analysis and analytical method 
( 0.5/ =ce dd , 0=cψ ). 
Fig. 4. Comparison between finite element analysis and analytical method ( 15=cψ ) 
Fig. 5. Comparison of radial deformations ( 0.5/ =ce dd , T = 2.5, 0=cψ  ). 
Fig. 6. Effect of load factor on settlement reduction for non-encased columns 
( 0== TJ ).  
Fig. 7. Effect of load factor on settlement reduction factor β  for weak encasement 
( 5.2=T ).  
Fig. 8. Effect of load factor on settlement reduction factor β  for stiff encasement 
( 10=T ).  
Fig. 9. Effect of modulus ratio sc EE /  on settlement reduction ( 3/ =ce dd , =T 0, 2.5 
and 10). 
Fig. 10. Effect of friction angle cϕ  on settlement reduction ( 3/ =ce dd , =T 0, 2.5 and 
10). 
Fig. 11. Effect of iniK  on settlement reduction ( 3/ =ce dd , =T 0, 2.5 and 10). 
Fig. 12. Effect of dilatancy on settlement reduction factor β  ( 3/ =ce dd , =T 0, 2.5 
and 10). 
Fig. 13. Design chart for the settlement reduction. 
Fig. 14. Comparison of authors’ method with that of Reithel and Kempfert (2000) - 

5.0)( =sA Hq γ . 
Fig. 15. Comparison of authors’ method with that of Reithel and Kempfert (2000) -

0.2)( =sA Hq γ .
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