22 research outputs found

    Assessment of wireless solutions in emerging broadband markets

    Get PDF
    Although broadband markets have grown steadily since the advent of the mobile Internet, penetration levels for developing countries are far from reaching the ordinary citizen. This thesis analyses three hypotheses as bottlenecks to the growth of emerging mobile broadband markets: (i) the low competence of users, (ii) the low quality of service, (iii) the high access price and, based on the results, alternative wireless solutions are studied to accelerate the Internet diffusion. Bottleneck hypotheses are evaluated through a quantitative bottleneck analysis that includes measured mobile QoS levels and macroeconomic indicators from a total of 9 cities including emerging (6) and advanced markets (3). Provided that low quality of service and data prices are identified as the main bottlenecks, a qualitative value network analysis evaluates wireless access technologies, caching technologies, collaborative business environments and, operator revenue models seeking a cost-effective solution. As a result, the thesis concludes that the affordability of broadband Internet is limited, in the first place, by the least cost-effective network technology (network costs need to be minimized), secondly by the level of competition in the market (profits of operators need to be minimized), and finally by business models of operators which could include subsidies from advertisers, content providers, governments, or implement a freemium model (access prices are minimized)

    A Cooperation-Driven ICN-based Caching Scheme for Mobile Content chunk Delivery at RAN

    Get PDF
    In order to resolve the tension between continuously growing mobile users’ demands on content access and the scarcity of the bandwidth capacity over backhaul links, we propose in this paper a fully distributed ICN-based caching scheme for content objects in Radio Access Network (RAN) at eNodeBs. Such caching scheme operates in a cooperative way within neighbourhoods, aiming to reduce cache redundancy so as to improve the diversity of content distribution. The caching decision logic at individual eNodeBs allows for adaptive caching, by taking into account dynamic context information, such as content popularity and availability. The efficiency of the proposed distributed caching scheme is evaluated via extensive simulations, which show great performance gains, in terms of a substantial reduction of backhaul content traffic as well as great improvement on the diversity of content distribution, etc

    Proxy-based near real-time TV content transmission in mobility over 4G with MPEG-DASH transcoding on the cloud

    Full text link
    [EN] This paper presents and evaluates a system that provides TV and radio services in mobility using 4G communications. The system has mainly two blocks, one on the cloud and another on the mobile vehicle. On the cloud, a DVB (Digital Video Broadcasting) receiver obtains the TV/radio signal and prepares the contents to be sent through 4G. Specifically, contents are transcoded and packetized using the DASH (Dynamic Adaptive Streaming over HTTP) standard. Vehicles in mobility use their 4G connectivity to receive the flows transmitted by the cloud. The key element of the system is an on-board proxy that manages the received flows and offers them to the final users in the vehicle. The proxy contains a buffer that helps reduce the number of interruptions caused by hand over effects and lack of coverage. The paper presents a comparison between a live transmission using 4G connecting the clients directly with the cloud server and a near real-time transmission based on an on-board proxy. Results prove that the use of the proxy reduces the number of interruptions considerably and, thus, improves the Quality of Experience of users at the expense of slightly increasing the delay.This work is supported by the Centro para el Desarrollo Tecnologico Industrial (CDTI) from the Government of Spain under the project "Plataforma avanzada de conectividad en movilidad" (CDTI IDI-20150126) and the project "Desarrollo de nueva plataforma de entretenimiento multimedia para entornos nauticos" (CDTI TIC-20170102).Arce Vila, P.; De Fez Lava, I.; Belda Ortega, R.; Guerri Cebollada, JC.; FerrairĂł, S. (2019). Proxy-based near real-time TV content transmission in mobility over 4G with MPEG-DASH transcoding on the cloud. Multimedia Tools and Applications. 78(18):26399-26425. https://doi.org/10.1007/s11042-019-07840-6S2639926425781

    Exploiting Caching and Multicast for 5G Wireless Networks

    Get PDF
    The landscape toward 5G wireless communication is currently unclear, and, despite the efforts of academia and industry in evolving traditional cellular networks, the enabling technology for 5G is still obscure. This paper puts forward a network paradigm toward next-generation cellular networks, targeting to satisfy the explosive demand for mobile data while minimizing energy expenditures. The paradigm builds on two principles; namely caching and multicast. On one hand, caching policies disperse popular content files at the wireless edge, e.g., pico-cells and femto-cells, hence shortening the distance between content and requester. On other hand, due to the broadcast nature of wireless medium, requests for identical files occurring at nearby times are aggregated and served through a common multicast stream. To better exploit the available cache space, caching policies are optimized based on multicast transmissions. We show that the multicast-aware caching problem is NP-hard and develop solutions with performance guarantees using randomized-rounding techniques. Trace-driven numerical results show that in the presence of massive demand for delay tolerant content, combining caching and multicast can indeed reduce energy costs. The gains over existing caching schemes are 19% when users tolerate delay of three minutes, increasing further with the steepness of content access pattern

    Characterization and Optimization of Resource Utilization for Cellular Networks.

    Full text link
    Cellular data networks have experienced significant growth in the recent years particularly due to the emergence of smartphones. Despite its popularity, there remain two major challenges associated with cellular carriers and their customers: carriers operate under severe resource constraints, while many mobile applications are unaware of the cellular specific characteristics, leading to inefficient radio resource and handset energy utilization. My dissertation is dedicated to address both challenges, aiming at providing practical, effective, and efficient methods to monitor and to reduce the resource utilization and bandwidth consumption in cellular networks. Specifically, from carriers' perspective, we performed the first measurement study to understand the state-of-the-art of resource utilization for a commercial cellular network, and revealed that fundamental limitation of the current resource management policy is treating all traffic according to the same resource management policy globally configured for all users. On mobile applications' side, we developed a novel data analysis framework called ARO (mobile Application Resource Optimizer), the first tool that exposes the interaction between mobile applications and the radio resource management policy, to reveal inefficient resource usage due to a lack of transparency in the lower-layer protocol behavior. ARO revealed that many popular applications built by professional developers have significant resource utilization inefficiencies that are previously unknown. Motivated by the observations from both sides, we further proposed a novel resource management framework that enables the cooperation between handsets and the network to allow adaptive resource release, therefore better balancing the key tradeoffs in cellular networks. We also investigated the problem of reducing the bandwidth consumption in cellular networks by performing the first network-wide study of HTTP caching on smartphones due to its popularity. Our findings suggest that for web caching, there exists a huge gap between the protocol specification and the protocol implementation on today's mobile devices, leading to significant amount of redundant network traffic.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/94024/1/fengqian_1.pd

    Coordinated Multi-Point Clustering Schemes: A Survey

    Full text link
    corecore