369 research outputs found

    Code Generation for Efficient Query Processing in Managed Runtimes

    Get PDF
    In this paper we examine opportunities arising from the conver-gence of two trends in data management: in-memory database sys-tems (IMDBs), which have received renewed attention following the availability of affordable, very large main memory systems; and language-integrated query, which transparently integrates database queries with programming languages (thus addressing the famous ‘impedance mismatch ’ problem). Language-integrated query not only gives application developers a more convenient way to query external data sources like IMDBs, but also to use the same querying language to query an application’s in-memory collections. The lat-ter offers further transparency to developers as the query language and all data is represented in the data model of the host program-ming language. However, compared to IMDBs, this additional free-dom comes at a higher cost for query evaluation. Our vision is to improve in-memory query processing of application objects by introducing database technologies to managed runtimes. We focus on querying and we leverage query compilation to im-prove query processing on application objects. We explore dif-ferent query compilation strategies and study how they improve the performance of query processing over application data. We take C] as the host programming language as it supports language-integrated query through the LINQ framework. Our techniques de-liver significant performance improvements over the default LINQ implementation. Our work makes important first steps towards a future where data processing applications will commonly run on machines that can store their entire datasets in-memory, and will be written in a single programming language employing language-integrated query and IMDB-inspired runtimes to provide transparent and highly efficient querying. 1

    BriskStream: Scaling Data Stream Processing on Shared-Memory Multicore Architectures

    Full text link
    We introduce BriskStream, an in-memory data stream processing system (DSPSs) specifically designed for modern shared-memory multicore architectures. BriskStream's key contribution is an execution plan optimization paradigm, namely RLAS, which takes relative-location (i.e., NUMA distance) of each pair of producer-consumer operators into consideration. We propose a branch and bound based approach with three heuristics to resolve the resulting nontrivial optimization problem. The experimental evaluations demonstrate that BriskStream yields much higher throughput and better scalability than existing DSPSs on multi-core architectures when processing different types of workloads.Comment: To appear in SIGMOD'1

    Optimal column layout for hybrid workloads

    Get PDF
    Data-intensive analytical applications need to support both efficient reads and writes. However, what is usually a good data layout for an update-heavy workload, is not well-suited for a read-mostly one and vice versa. Modern analytical data systems rely on columnar layouts and employ delta stores to inject new data and updates. We show that for hybrid workloads we can achieve close to one order of magnitude better performance by tailoring the column layout design to the data and query workload. Our approach navigates the possible design space of the physical layout: it organizes each column’s data by determining the number of partitions, their corresponding sizes and ranges, and the amount of buffer space and how it is allocated. We frame these design decisions as an optimization problem that, given workload knowledge and performance requirements, provides an optimal physical layout for the workload at hand. To evaluate this work, we build an in-memory storage engine, Casper, and we show that it outperforms state-of-the-art data layouts of analytical systems for hybrid workloads. Casper delivers up to 2.32x higher throughput for update-intensive workloads and up to 2.14x higher throughput for hybrid workloads. We further show how to make data layout decisions robust to workload variation by carefully selecting the input of the optimization.http://www.vldb.org/pvldb/vol12/p2393-athanassoulis.pdfPublished versionPublished versio

    MonetDB/X100 - A DBMS in the CPU cache

    Get PDF
    X100 is a new execution engine for the MonetDB system, that improves execution speed and overcomes its main memory limitation. It introduces t

    Event Stream Processing with Multiple Threads

    Full text link
    Current runtime verification tools seldom make use of multi-threading to speed up the evaluation of a property on a large event trace. In this paper, we present an extension to the BeepBeep 3 event stream engine that allows the use of multiple threads during the evaluation of a query. Various parallelization strategies are presented and described on simple examples. The implementation of these strategies is then evaluated empirically on a sample of problems. Compared to the previous, single-threaded version of the BeepBeep engine, the allocation of just a few threads to specific portions of a query provides dramatic improvement in terms of running time
    corecore