75 research outputs found

    Hypergraph-Based Analysis of Clustered Cooperative Beamforming with Application to Edge Caching

    Full text link
    The evaluation of the performance of clustered cooperative beamforming in cellular networks generally requires the solution of complex non-convex optimization problems. In this letter, a framework based on a hypergraph formalism is proposed that enables the derivation of a performance characterization of clustered cooperative beamforming in terms of per-user degrees of freedom (DoF) via the efficient solution of a coloring problem. An emerging scenario in which clusters of cooperative base stations (BSs) arise is given by cellular networks with edge caching. In fact, clusters of BSs that share the same requested files can jointly beamform the corresponding encoded signals. Based on this observation, the proposed framework is applied to obtain quantitative insights into the optimal use of cache and backhaul resources in cellular systems with edge caching. Numerical examples are provided to illustrate the merits of the proposed framework.Comment: 10 pages, 5 figures, Submitte

    Complete Interference Mitigation Through Receiver-Caching in Wyner's Networks

    Full text link
    We present upper and lower bounds on the per-user multiplexing gain (MG) of Wyner's circular soft-handoff model and Wyner's circular full model with cognitive transmitters and receivers with cache memories. The bounds are tight for cache memories with prelog μ≥2/3D\mu\geq 2/3D in the soft-handoff model and for μ≥D\mu \geq D in the full model, where DD denotes the number of possibly demanded files. In these cases the per-user MG of the two models is 1+μ/D1+\mu/D, the same as for non-interfering point-to-point links with caches at the receivers. Large receiver cache-memories thus allow to completely mitigate interference in these networks.Comment: Submitted to ITW 2016 in Cambridg

    On the Interplay Between Edge Caching and HARQ in Fog-RAN

    Full text link
    In a Fog Radio Access Network (Fog-RAN), edge caching is combined with cloud-aided transmission in order to compensate for the limited hit probability of the caches at the base stations (BSs). Unlike the typical wired scenarios studied in the networking literature in which entire files are typically cached, recent research has suggested that fractional caching at the BSs of a wireless system can be beneficial. This paper investigates the benefits of fractional caching in a scenario with a cloud processor connected via a wireless fronthaul link to a BS, which serves a number of mobile users on a wireless downlink channel using orthogonal spectral resources. The fronthaul and downlink channels occupy orthogonal frequency bands. The end-to-end delivery latency for given requests of the users depends on the HARQ processes run on the two links to counteract fading-induced outages. An analytical framework based on theory of Markov chains with rewards is provided that enables the optimization of fractional edge caching at the BSs. Numerical results demonstrate meaningful advantages for fractional caching due to the interplay between caching and HARQ transmission. The gains are observed in the typical case in which the performance is limited by the wireless downlink channel and the file popularity distribution is not too skewed

    Caching at the Edge with Fountain Codes

    Get PDF
    We address the use of linear randon fountain codes caching schemes in a heterogeneous satellite network. We consider a system composed of multiple hubs and a geostationary Earth orbit satellite. Coded content is memorized in hubs' caches in order to serve immediately the user requests and reduce the usage of the satellite backhaul link. We derive the analytical expression of the average backhaul rate, as well as a tight upper bound to it with a simple expression. Furthermore, we derive the optimal caching strategy which minimizes the average backhaul rate and compare the performance of the linear random fountain code scheme to that of a scheme using maximum distance separable codes. Our simulation results indicate that the performance obtained using fountain codes is similar to that of maximum distance separable codes
    • …
    corecore