2,507 research outputs found

    Undermining User Privacy on Mobile Devices Using AI

    Full text link
    Over the past years, literature has shown that attacks exploiting the microarchitecture of modern processors pose a serious threat to the privacy of mobile phone users. This is because applications leave distinct footprints in the processor, which can be used by malware to infer user activities. In this work, we show that these inference attacks are considerably more practical when combined with advanced AI techniques. In particular, we focus on profiling the activity in the last-level cache (LLC) of ARM processors. We employ a simple Prime+Probe based monitoring technique to obtain cache traces, which we classify with Deep Learning methods including Convolutional Neural Networks. We demonstrate our approach on an off-the-shelf Android phone by launching a successful attack from an unprivileged, zeropermission App in well under a minute. The App thereby detects running applications with an accuracy of 98% and reveals opened websites and streaming videos by monitoring the LLC for at most 6 seconds. This is possible, since Deep Learning compensates measurement disturbances stemming from the inherently noisy LLC monitoring and unfavorable cache characteristics such as random line replacement policies. In summary, our results show that thanks to advanced AI techniques, inference attacks are becoming alarmingly easy to implement and execute in practice. This once more calls for countermeasures that confine microarchitectural leakage and protect mobile phone applications, especially those valuing the privacy of their users

    Stacco: Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves

    Full text link
    Intel Software Guard Extension (SGX) offers software applications enclave to protect their confidentiality and integrity from malicious operating systems. The SSL/TLS protocol, which is the de facto standard for protecting transport-layer network communications, has been broadly deployed for a secure communication channel. However, in this paper, we show that the marriage between SGX and SSL may not be smooth sailing. Particularly, we consider a category of side-channel attacks against SSL/TLS implementations in secure enclaves, which we call the control-flow inference attacks. In these attacks, the malicious operating system kernel may perform a powerful man-in-the-kernel attack to collect execution traces of the enclave programs at page, cacheline, or branch level, while positioning itself in the middle of the two communicating parties. At the center of our work is a differential analysis framework, dubbed Stacco, to dynamically analyze the SSL/TLS implementations and detect vulnerabilities that can be exploited as decryption oracles. Surprisingly, we found exploitable vulnerabilities in the latest versions of all the SSL/TLS libraries we have examined. To validate the detected vulnerabilities, we developed a man-in-the-kernel adversary to demonstrate Bleichenbacher attacks against the latest OpenSSL library running in the SGX enclave (with the help of Graphene) and completely broke the PreMasterSecret encrypted by a 4096-bit RSA public key with only 57286 queries. We also conducted CBC padding oracle attacks against the latest GnuTLS running in Graphene-SGX and an open-source SGX-implementation of mbedTLS (i.e., mbedTLS-SGX) that runs directly inside the enclave, and showed that it only needs 48388 and 25717 queries, respectively, to break one block of AES ciphertext. Empirical evaluation suggests these man-in-the-kernel attacks can be completed within 1 or 2 hours.Comment: CCS 17, October 30-November 3, 2017, Dallas, TX, US

    Ozone: Efficient Execution with Zero Timing Leakage for Modern Microarchitectures

    Full text link
    Time variation during program execution can leak sensitive information. Time variations due to program control flow and hardware resource contention have been used to steal encryption keys in cipher implementations such as AES and RSA. A number of approaches to mitigate timing-based side-channel attacks have been proposed including cache partitioning, control-flow obfuscation and injecting timing noise into the outputs of code. While these techniques make timing-based side-channel attacks more difficult, they do not eliminate the risks. Prior techniques are either too specific or too expensive, and all leave remnants of the original timing side channel for later attackers to attempt to exploit. In this work, we show that the state-of-the-art techniques in timing side-channel protection, which limit timing leakage but do not eliminate it, still have significant vulnerabilities to timing-based side-channel attacks. To provide a means for total protection from timing-based side-channel attacks, we develop Ozone, the first zero timing leakage execution resource for a modern microarchitecture. Code in Ozone execute under a special hardware thread that gains exclusive access to a single core's resources for a fixed (and limited) number of cycles during which it cannot be interrupted. Memory access under Ozone thread execution is limited to a fixed size uncached scratchpad memory, and all Ozone threads begin execution with a known fixed microarchitectural state. We evaluate Ozone using a number of security sensitive kernels that have previously been targets of timing side-channel attacks, and show that Ozone eliminates timing leakage with minimal performance overhead
    • …
    corecore