2 research outputs found

    Cache-Oblivious VAT-Algorithms

    Full text link
    The VAT-model (virtual address translation model) extends the EM-model (external memory model) and takes the cost of address translation in virtual memories into account. In this model, the cost of a single memory access may be logarithmic in the largest address used. We show that the VAT-cost of cache-oblivious algorithms is only by a constant factor larger than their EM-cost; this requires a somewhat more stringent tall cache assumption as for the EM-model

    The Cost of Address Translation

    Full text link
    Modern computers are not random access machines (RAMs). They have a memory hierarchy, multiple cores, and virtual memory. In this paper, we address the computational cost of address translation in virtual memory. Starting point for our work is the observation that the analysis of some simple algorithms (random scan of an array, binary search, heapsort) in either the RAM model or the EM model (external memory model) does not correctly predict growth rates of actual running times. We propose the VAT model (virtual address translation) to account for the cost of address translations and analyze the algorithms mentioned above and others in the model. The predictions agree with the measurements. We also analyze the VAT-cost of cache-oblivious algorithms.Comment: A extended abstract of this paper was published in the proceedings of ALENEX13, New Orleans, US
    corecore