2,952 research outputs found

    DEBS Grand Challenge: Glasgow Automata Illustrated

    Get PDF
    The challenge is solved using Glasgow automata, concise complex event processing engines executable in the context of a topic-based publish/subscribe cache of event streams and relations. The imperative programming style of the Glasgow Automaton Programming Language (GAPL) enables multiple, efficient realisations of the two challenge queries

    Simultaneous Finite Automata: An Efficient Data-Parallel Model for Regular Expression Matching

    Get PDF
    Automata play important roles in wide area of computing and the growth of multicores calls for their efficient parallel implementation. Though it is known in theory that we can perform the computation of a finite automaton in parallel by simulating transitions, its implementation has a large overhead due to the simulation. In this paper we propose a new automaton called simultaneous finite automaton (SFA) for efficient parallel computation of an automaton. The key idea is to extend an automaton so that it involves the simulation of transitions. Since an SFA itself has a good property of parallelism, we can develop easily a parallel implementation without overheads. We have implemented a regular expression matcher based on SFA, and it has achieved over 10-times speedups on an environment with dual hexa-core CPUs in a typical case.Comment: This paper has been accepted at the following conference: 2013 International Conference on Parallel Processing (ICPP- 2013), October 1-4, 2013 Ecole Normale Suprieure de Lyon, Lyon, Franc

    Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    Full text link
    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special issue on "Computer simulations on GPU

    Synthesis of Safe, QoS Extendible, Application Specific Schedulers for Heterogeneous Real-Time Systems

    Get PDF
    We present a new scheduler architecture, which permits adding QoS (quality of service) policies to the scheduling decisions. We also present a new scheduling synthesis method which allows a designer to obtain a safe scheduler for a particular application. Our scheduler architecture and scheduler synthesis method can be used for heterogeneous applications where the tasks communicate through various synchronization primitives. We present a prototype implementation of this scheduler architecture and related mechanisms on top of an open-source OS (operating system) for embedded systems
    • …
    corecore