57 research outputs found

    Cache Timing Attacks on Camellia Block Cipher

    Get PDF
    Camellia, as the final winner of 128-bit block cipher in NESSIE, is the most secure block cipher of the world. In 2003, Tsunoo proposed a Cache Attack using a timing of CPU cache, successfully recovered Camellia-128 key within 228 plaintexts and 35 minutes. In 2004, IKEDA YOSHITAKA made some further improvements on Tsunoo’s attacks, recovered Camellia-128 key within 221.4 plaintexts and 22 minutes. All of their attacks are belonged to timing driven Cache attacks, our research shows that, due to its frequent S-box lookup operations, Camellia is also quite vulnerable to access driven Cache timing attacks, and it is much more effective than timing driven Cache attacks. Firstly, we provide a general analysis model for symmetric ciphers using S-box based on access driven Cache timing attacks, point out that the F function of the Camellia can leak information about the result of encryption key XORed with expand-key, and the left circular rotating operation of the key schedule in Camellia has serious designing problem. Next, we present several attacks on Camellia-128/192/256 with and without FL/FL-1. Experiment results demonstrate: 500 random plaintexts are enough to recover full Camellia-128 key; 900 random plaintexts are enough to recover full Camellia-192/256 key; also, our attacks can be expanded to known ciphertext conditions by attacking the Camellia decryption procedure; besides, our attacks are quite easy to be expanded to remote scenarios, 3000 random plaintexts are enough to recover full encryption key of Camellia-128/192/256 in both local and campus networks. Finally, we discuss the reason why Camellia is weak in this type of attack, and provide some advices to cipher designers for hardening ciphers against cache timing attacks

    An Improved Differential Fault Attack on Camellia

    Get PDF
    The S-box lookup is one of the most important operations in cipher algorithm design, and also is the most effective part to prevent traditional linear and differential attacks, however, when the physical implementation of the algorithm is considered, it becomes the weakest part of cryptosystems. This paper studies an active fault based implementation attack on block ciphers with S-box. Firstly, it proposes the basic DFA model and then presents two DFA models for Feistel and SPN structure block ciphers. Secondly, based on the Feistel DFA model, it presents several improved attacks on Camellia encryption and proposes new attacks on Camellia key schedule. By injecting one byte random fault into the r-1th round left register or the the r-1th round key, after solving 8 equations to recover 5 or 6 propagated differential fault of the rth round left register, 5 or 6 bytes of the rth equivalent subkey can be recovered at one time. Simulation experiments demonstrate that about 16 faulty ciphertexts are enough to obtain Camellia-128 key, and about 32, 24 ciphertexts are required to obtain both Camellia-192/256 key with and without FL/FL-1 layer respectively. Compared with the previous study by ZHOU Yongbin et. al. by injecting one byte fault into the rth round left register to recover 1 equivalent subkey byte and obtaining Camellia-128 and Camellia-192/256 with 64 and 96 faulty ciphertexts respectively, our attacks not only extend the fault location, but also improve the fault injection efficiency and decrease the faulty ciphertexts number, besides, our DFA model on Camellia encryption can be easily extended to DFA on Camellia key schedule case, while ZHOU’s can not. The attack model proposed in this paper can be adapted into most of the block ciphers with S-boxes. Finally, the contradictions between traditional cryptography and implementation attacks are analyzed, the state of the art and future directions of the DFA on Block ciphers with S-boxes are discussed

    Research on performance enhancement for electromagnetic analysis and power analysis in cryptographic LSI

    Get PDF
    制度:新 ; 報告番号:甲3785号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6161Waseda Universit

    Improved Cache Trace Attack on AES and CLEFIA by Considering Cache Miss and S-box Misalignment

    Get PDF
    This paper presents an improved Cache trace attack on AES and CLEFIA by considering Cache miss trace information and S-box misalignment. In 2006, O. Acıiçmez et al. present a trace driven Cache attack on AES first two rounds, and point out that if the Cache element number of the Cache block is 16, at most 48-bit of AES key can be obtained in the first round attack. Their attack is based on the ideal case when S-box elements are perfected aligned in the Cache block. However, this paper discovers that, the S-box elements are usually misaligned, and due to this feature and by considering Cache miss trace information, about 200 samples are enough to obtain full 128-bit AES key within seconds. In 2010, Chester Rebeiro et al. present the first trace driven Cache attack on C LEFIA by considering Cache hit information and obtain 128-bit key with 243 CLEFIA encryptions. In this paper, we present a new attack on CLEFIA by considering Cache miss information and S-box misalignment features, finally successfully obtain CLEFIA-128 key for about 220 samples within seconds

    PRISEC: Comparison of Symmetric Key Algorithms for IoT Devices

    Get PDF
    With the growing number of heterogeneous resource-constrained devices connected to the Internet, it becomes increasingly challenging to secure the privacy and protection of data. Strong but efficient cryptography solutions must be employed to deal with this problem, along with methods to standardize secure communications between these devices. The PRISEC module of the UbiPri middleware has this goal. In this work, we present the performance of the AES (Advanced Encryption Standard), RC6 (Rivest Cipher 6), Twofish, SPECK128, LEA, and ChaCha20-Poly1305 algorithms in Internet of Things (IoT) devices, measuring their execution times, throughput, and power consumption, with the main goal of determining which symmetric key ciphers are best to be applied in PRISEC. We verify that ChaCha20-Poly1305 is a very good option for resource constrained devices, along with the lightweight block ciphers SPECK128 and LEA.info:eu-repo/semantics/publishedVersio
    corecore