60,520 research outputs found

    Towards the development of the supply chain of concentrated solar power

    Get PDF
    This work focuses on the investigation into the planning of renewable energy power plants in Brazil using the Concentrated Solar Power (CSP) technology. The main aim of the paper is to present an analysis of the planning process that can be used as a basis of the development of a method to assess the Brazilian’s local manufacturing and supply chain capabilities in supporting the deployment of the CSP technology. The paper identifies areas in which the concerted efforts should be emphasized. For this, the paper will first discuss the key components of the chosen CSP technology (in this case the parabolic through). The manufacturing processes of these components will subsequently be analyzed and the key enabling technologies will be determined. The demands of electricity will be estimated using the System Advisory Model®, a modelling tool developed by the National Renewable Energy Laboratory (NREL). An assessment method will finally be proposed to identify the potentials of the local Brazilian supply chain, through the readiness evaluation of the key enabling technologies and manufacturing processes

    Identifying opportunities for developing CSP and PV-CSP hybrid projects under current tender conditions and market perspectives in MENA – benchmarking with PV-CCGT

    Get PDF
    Concentrating solar power (CSP) is one of the promising renewable energy technologies provided the fact that it is equipped with a cost-efficient storage system, thermal energy storage (TES). This solves the issue of intermittency of other renewable energy technologies and gives the advantage of achieving higher capacity factors and lower levelized costs of electricity (LCOE). This is the main reason why solar tower power plants (STPP) with molten salts and integrated TES are considered one of the most promising CSP technologies in the short term [1]. On the other hand, solar photovoltaic (PV) is a technology whose costs have been decreasing and are expected to continue doing so thus providing competitive LCOE values, but with relatively low capacity factors as electrical storage systems remain not cost-effective. Combining advantages and eliminating drawbacks of both technologies (CSP and PV), Hybridized PV-CSP power plants can be deemed as a competitive economic solution to offer firm output power when CSP is operated smartly so that its load is regulated in response to the PV output. Indeed previous works, have identified that it would allow achieving lower LCOEs than stand-alone CSP plants by means of allowing it to better utilize the solar field for storing energy during the daytime while PV is used [1]. On the fossil-based generation side, the gas turbine combined cycle (CCGT) occupies an outstanding position among power generation technologies. This is due to the fact that it is considered the most efficient fossil fuel-to-electricity converter, in addition to the maturity of such technology, high flexibility, and the generally low LCOE, which is largely dominated by fuel cost and varies depending on the natural gas price at a specific location. Obviously, the main drawback is the generated carbon emissions. In countries rich in natural gas resources and with vast potential for renewable energies implementation, such as the United Arab Emirates (UAE), abandoning a low LCOE technology with competitively low emissions – compared to coal or oil - and heading to costly pure renewable generation, seems like an aggressive plan. Therefore, hybridizing CCGT with renewable generation can be considered an attractive option for reducing emissions at reasonable costs. This is the case of the UAE with vast resources of both natural gas and solar energy. Previous work have shown the advantages of hybrid PV-CCGT and hybrid PV-CSP plants separately [1][2]. In this thesis, CSP and the two hybrid systems are compared on the basis of LCOE and CO2 emissions for a same firm-power capacity factor when considering a location in the UAE. The results are compared against each other to highlight the benefits of each technology from both environmental and economic standpoints and provide recommendations for future work in the field. The techno-economic analysis of CSP (STPP with TES), PV-CSP(STPP with TES) and PV-CCGT power plants have been performed by DYESOPT, an in-house tool developed in KTH, which runs techno-economic performance evaluation of power plants through multi-objective optimization for specific locations[1]. For this thesis, a convenient location in the UAE was chosen for simulating the performance of the plants. The UAE is endowed by the seventh-largest proven natural gas reserves and average to high global horizontal irradiation (GHI) and direct normal irradiation (DNI) values all year round, values considered to be lower than other countries in the MENA region due to its high aerosol concentrations and sand storms. The plants were designed to provide firm power in two cases, first as baseload, and second as intermediate load of 15 hours from 6:00 until 21:00. The hours of production were selected based on a typical average daily load profile. CSP and PV-CSP model previously developed by [3][1] were used. Ideally in the PV-CSP model, during daytime hours the PV generation is used for electricity production, covering the desired load, while CSP is used partly for electricity production and the rest for storing energy in the TES. Energy in the TES system is then used to supply firm power during both periods of low Irradiance and night hours or according to need. A PV-CCGT model has been developed which operates simultaneously, prioritizing the availability of PV while the CCGT fulfils the remaining requirement. There is a minimum loading for the CCGT plant which is determined by the minimum possible partial loading of the gas turbine restricted by the emission constraints. Accordingly, in some cases during operation PV is chosen to be curtailed due to this limitation. The main results of the techno-economic analysis are concluded in the comparative analysis of the 3 proposed power plant configurations, where the PV-CCGT plant is the most economic with minimum LCOE of 86 USD/MWh, yet, the least preferable option in terms of carbon emissions. CSP and PV-CSP provided higher LCOE, while the PV-CSP plant configuration met the same capacity factor with 11% reduction in LCOE, compared to CSP

    Desert Power: The Economics of Solar Thermal Electricity for Europe, North Africa, and the Middle East

    Get PDF
    A climate crisis is inevitable unless developing countries limit carbon emissions from the power sector in the near future. This will happen only if the costs of lowcarbon power production become competitive with fossil fuel power. We focus on a leading candidate for investment: solar thermal or concentrating solar power (CSP), a commercially available technology that uses direct sunlight and mirrors to boil water and drive conventional steam turbines. Solar thermal power production in North Africa and the Middle East could provide enough power to Europe to meet the needs of 35 million people by 2020. We compute the subsidies needed to bring CSP to financial parity with fossil-fuel alternatives. We conclude that large-scale deployment of CSP is attainable with subsidy levels that are modest, given the planetary stakes. By the end of the program, unsubsidized CSP projects are likely to be competitive with coal- and gasbased power production in Europe. The question is not whether CSP is feasible but whether programs using CSP technology will be operational in time to prevent catastrophic climate change. For such programs to spur the clean energy revolution, efforts to arrange financing should begin right away, with site acquisition and construction to follow within a year.Solar energy, Africa, climate change, energy technology

    Concentrating Solar Power: Focusing the Sun's Energy with Mirrors to Produce Electricity

    Get PDF
    Key facts: - Concentrating solar power (CSP) technologies use mirrors to focus the sun's heat. This heat is used to boil water, and the resulting steam turns a turbine to generate electricity. - Concentrating solar power plants provide the lowest cost power of any solar technology. They can produce electricity for 0.09to0.09 to 0.12 per kilowatt-hour (kWh), which can be competitive with peak power prices. - About 500 megawatts (MW) of concentrating solar power capacity will be installed worldwide by the end of 2005, according to the US Department of Energy. The world's largest solar facility, a 345 MW CSP trough system, has been operating in the Mojave Desert in California since 1984. The United States has enormous solar energy potential. For example, a 100 mile by 100 mile plot of land in Nevada, fitted with CSP trough systems, could provide enough electricity for the entire United States, according to the National Renewable Energy Laboratory

    Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies

    Get PDF
    Producción CientíficaAnalyses proposing a high share of concentrated solar power (CSP) in future 100% renewable energy scenarios rely on the ability of this technology, through storage and/or hybridization, to partially avoid the problems associated with the hourly/daily (short-term) variability of other variable renewable sources such as wind or solar photovoltaic. However, data used in the scientific literature are mainly theoretical values. In this work, the actual performance of CSP plants in operation from publicly available data from four countries (Spain, the USA, India, and United Arab Emirates) has been estimated for three dimensions: capacity factor (CF), seasonal variability, and energy return on energy invested (EROI). In fact, the results obtained show that the actual performance of CSP plants is significantly worse than that projected by constructors and considered by the scientific literature in the theoretical studies: a CF in the range of 0.15–0.3, low standard EROI (1.3:1–2.4:1), intensive use of materials—some scarce, and significant seasonal intermittence. In the light of the obtained results, the potential contribution of current CSP technologies in a future 100% renewable energy system seems very limited.Ministerio de Economía, Industria y Competitividad (Project FJCI-2016-28833)European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 69128

    Improving Carbon and Process Utilization for Biomass-to-Liquid Fuel Operations

    Get PDF
    With the increasing world demand for transportation fuels, declining petroleum reserves and quest for energy security, there is a renewed interest in Fischer-Tropsch (FT) technology as a viable alternative for the production of liquid fuels from carbonaceous resources (natural gas, coal and biomass). Concern about global warming has also created a special interest in the use of biomass (Biom ass-ToLiquid Fuels, BTL) as a carbon-neutral route to liquid fuels. However, carbon utilization in BTL via traditional biomass gasification is between 25 – 40 % of carbons in the biomass feedstock. This results in poor process economy. Energy input from concentrated solar power (CSP) into BTL can salvage undue large carbon discharge in traditional BTL. The CSP-BTL hybrid not only improves carbon utilization but is also a plausible strategy for solar energy storage

    Using a desktop grid to support simulation modelling

    Get PDF
    Simulation is characterized by the need to run multiple sets of computationally intensive experiments. We argue that Grid computing can reduce the overall execution time of such experiments by tapping into the typically underutilized network of departmental desktop PCs, collectively known as desktop grids. Commercial-off-the-shelf simulation packages (CSPs) are used in industry to simulate models. To investigate if Grid computing can benefit simulation, this paper introduces our desktop grid, WinGrid, and discusses how this can be used to support the processing needs of CSPs. Results indicate a linear speed up and that Grid computing does indeed hold promise for simulation

    Femtosecond deep-infrared optical parametric oscillator pumped directly by a Ti:sapphire laser

    Get PDF
    We report a high-repetition-rate femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on the nonlinear optical crystal, CdSiP2 (CSP), pumped directly by a Ti:sapphire laser, for the first time. By pumping CSP at <1 μm, we have achieved practical output powers at the longest wavelengths generated by any Ti:sapphire-pumped OPO. Using a combination of pump wavelength tuning, type-I critical phase-matching, and cavity delay tuning, we have generated continuously tunable radiation across 6654−8373 nm (1194−1503 cm-1) at 80.5 MHz repetition rate, providing up to 20 mW of average power at 7314 nm and <7 mW beyond 8000 nm, with idler spectra exhibiting bandwidths of 140−180 nm across the tuning range. Moreover, the near-IR signal is tunable across 1127−1192 nm, providing up to 37 mW of average power at 1150 nm. Signal pulses, characterised using intensity autocorrelation, have durations of ∼260–320 fs, with corresponding time-bandwidth product of ∆υ∆τ∼1. The idler and signal output exhibit a TEM00 spatial profile with single-peak Gaussian distribution. With an equivalent spectral brightness of ∼6.68×1020 photons s-1 mm-2 sr-1 0.1% BW-1, this OPO represents a viable table-top alternative to synchrotron and supercontinuum sources for deep-IR applications in spectroscopy, metrology and medical diagnostics.Peer ReviewedPostprint (author's final draft

    Panel on future challenges in modeling methodology

    Get PDF
    This panel paper presents the views of six researchers and practitioners of simulation modeling. Collectively we attempt to address a range of key future challenges to modeling methodology. It is hoped that the views of this paper, and the presentations made by the panelists at the 2004 Winter Simulation Conference will raise awareness and stimulate further discussion on the future of modeling methodology in areas such as modeling problems in business applications, human factors and geographically dispersed networks; rapid model development and maintenance; legacy modeling approaches; markup languages; virtual interactive process design and simulation; standards; and Grid computing
    corecore