4 research outputs found

    Pop-Up Stretchable Sensor Designs Using Multiphysics Modeliing

    Get PDF
    Stretchable electronic devices are critical for the future of wearable sensor technology, where existing rigid and non-flexible devices severely limit the applicability of them in many areas. Stretchable electronics extend flexible electronics one step further by introducing significant elastic deformation. Stretchable electronics can conform to curvy geometries like human skin which enables new applications such as fully wearable electronics whose properties can be tuned through mechanical deformation. Much of the effort in stretchable electronics has focused on investigation of the optimum fabrication method to make a trade-off between the manufacturing cost and acceptable performance. Here in this thesis a novel pop-up strain sensor design is introduced and tested.This technique is simple to use and can be applied to almost all available materials such as metals, dielectrics, semiconductors and different scales from centi-meter to nanoscale. Using this method three main electronic devices have been designed for different applications. The first category is pop-up antennas that are able to reconfigure their frequency response with respect to the mechanical deformation by out of plane displacement. The second category is pop-up frequency selective surface which similarly can change its frequency behaviour due to applied strain. This ability to accommodate the applied stress by three-dimensional (3D) deformation, making these devices ideal for strain sensing applications such as vapor sensing or on skin mountable sensors. Using the advantage of RFID technology in terms of wireless monitoring, the third category has been introduced which is a pop-up capacitor sensor integrating with an RFID chip to detect finger joint bending that can help those patients who are recovering after stroke. The proposed devices have been modelled using COMSOL Multiphysics and Extensive evaluations of the prototype system were conducted on purpose-built laboratory scale test rigs. Both results are in good correlation which makes them applicable for sensing purposes

    Performance analysis for wireless G (IEEE 802.11G) and wireless N (IEEE 802.11N) in outdoor environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. The comparison consider on coverage area (mobility), throughput and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g

    Performance Analysis For Wireless G (IEEE 802.11 G) And Wireless N (IEEE 802.11 N) In Outdoor Environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. the comparison consider on coverage area (mobility), through put and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore