71,612 research outputs found

    Modeling the Temperature Bias of Power Consumption for Nanometer-Scale CPUs in Application Processors

    Full text link
    We introduce and experimentally validate a new macro-level model of the CPU temperature/power relationship within nanometer-scale application processors or system-on-chips. By adopting a holistic view, this model is able to take into account many of the physical effects that occur within such systems. Together with two algorithms described in the paper, our results can be used, for instance by engineers designing power or thermal management units, to cancel the temperature-induced bias on power measurements. This will help them gather temperature-neutral power data while running multiple instance of their benchmarks. Also power requirements and system failure rates can be decreased by controlling the CPU's thermal behavior. Even though it is usually assumed that the temperature/power relationship is exponentially related, there is however a lack of publicly available physical temperature/power measurements to back up this assumption, something our paper corrects. Via measurements on two pertinent platforms sporting nanometer-scale application processors, we show that the power/temperature relationship is indeed very likely exponential over a 20{\deg}C to 85{\deg}C temperature range. Our data suggest that, for application processors operating between 20{\deg}C and 50{\deg}C, a quadratic model is still accurate and a linear approximation is acceptable.Comment: Submitted to SAMOS 2014; International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV

    Ensemble Sales Forecasting Study in Semiconductor Industry

    Full text link
    Sales forecasting plays a prominent role in business planning and business strategy. The value and importance of advance information is a cornerstone of planning activity, and a well-set forecast goal can guide sale-force more efficiently. In this paper CPU sales forecasting of Intel Corporation, a multinational semiconductor industry, was considered. Past sale, future booking, exchange rates, Gross domestic product (GDP) forecasting, seasonality and other indicators were innovatively incorporated into the quantitative modeling. Benefit from the recent advances in computation power and software development, millions of models built upon multiple regressions, time series analysis, random forest and boosting tree were executed in parallel. The models with smaller validation errors were selected to form the ensemble model. To better capture the distinct characteristics, forecasting models were implemented at lead time and lines of business level. The moving windows validation process automatically selected the models which closely represent current market condition. The weekly cadence forecasting schema allowed the model to response effectively to market fluctuation. Generic variable importance analysis was also developed to increase the model interpretability. Rather than assuming fixed distribution, this non-parametric permutation variable importance analysis provided a general framework across methods to evaluate the variable importance. This variable importance framework can further extend to classification problem by modifying the mean absolute percentage error(MAPE) into misclassify error. Please find the demo code at : https://github.com/qx0731/ensemble_forecast_methodsComment: 14 pages, Industrial Conference on Data Mining 2017 (ICDM 2017

    Comparing improved actions for SU(2)

    Get PDF
    In order to help the user in choosing the right action a performance comparison is done for seven improved actions. Six of them are Symanzik improved, one at tree-level and two at one-loop, all with or without tadpole improvement. The seventh is an approximate fixed point action. Observables are static on- and off-axis two-body potentials and four-body binding energies, whose precision is compared when the same amount of computer time is used by the programs.Comment: 3 pages, 3 colour eps figures. Presented at LATTICE9

    A methodology for full-system power modeling in heterogeneous data centers

    Get PDF
    The need for energy-awareness in current data centers has encouraged the use of power modeling to estimate their power consumption. However, existing models present noticeable limitations, which make them application-dependent, platform-dependent, inaccurate, or computationally complex. In this paper, we propose a platform-and application-agnostic methodology for full-system power modeling in heterogeneous data centers that overcomes those limitations. It derives a single model per platform, which works with high accuracy for heterogeneous applications with different patterns of resource usage and energy consumption, by systematically selecting a minimum set of resource usage indicators and extracting complex relations among them that capture the impact on energy consumption of all the resources in the system. We demonstrate our methodology by generating power models for heterogeneous platforms with very different power consumption profiles. Our validation experiments with real Cloud applications show that such models provide high accuracy (around 5% of average estimation error).This work is supported by the Spanish Ministry of Economy and Competitiveness under contract TIN2015-65316-P, by the Gener- alitat de Catalunya under contract 2014-SGR-1051, and by the European Commission under FP7-SMARTCITIES-2013 contract 608679 (RenewIT) and FP7-ICT-2013-10 contracts 610874 (AS- CETiC) and 610456 (EuroServer).Peer ReviewedPostprint (author's final draft
    • …
    corecore