147 research outputs found

    The need to implement the landscape of fear within rodent pest management strategies

    Get PDF
    Current reactive pest management methods have serious drawbacks such as the heavy reliance on chemicals, emerging genetic rodenticide resistance, and high secondary exposure risks. Rodent control needs to be based on pest-species ecology and ethology to facilitate development of ecologically-based rodent management (EBRM). An important aspect of EBRM is a strong understanding of rodent pest species ecology, behaviour, and spatiotemporal factors. Gaining insight in the behaviour of pest-species is a key aspect of EBRM. The landscape of fear is a mapping of the spatial variation in the foraging cost arising from the risk of predation and reflects levels of fear a prey species perceives at different locations within its home range. In practice, the landscape of fear (LOF) is a mapping of habitat use as a result of perceived fear, which shows where bait or traps are most likely to be encountered and used by rodents. Several studies link perceived predation risk of foraging animals with quitting-harvest rates or giving-up densities (GUDs). GUDs have been used to reflect foraging behaviour strategies of predator avoidance, but to our knowledge very few papers have directly used GUDs in relation to pest management strategies. An opportunity for rodent control strategies lies in the integration of the LOF of rodents in EBRM methodologies. Rodent management could be more efficient and effective by concentrating on those areas where rodents perceive the least levels of predation risk

    IRIS study: a phase II study of the steroid sulfatase inhibitor Irosustat when added to an aromatase inhibitor in ER-positive breast cancer patients

    Get PDF
    Purpose: Irosustat is a first-generation, orally active, irreversible steroid sulfatase inhibitor. We performed a multicentre, open label phase II trial of the addition of Irosustat to a first-line aromatase inhibitor (AI) in patients with advanced BC to evaluate the safety of the combination and to test the hypothesis that the addition of Irosustat to AI may further suppress estradiol levels and result in clinical benefit. Experimental design: Postmenopausal women with ER-positive locally advanced or metastatic breast cancer who had derived clinical benefit from a first-line AI and who subsequently progressed were enrolled. The first-line AI was continued and Irosustat (40 mg orally daily) added. The primary endpoint was clinical benefit rate (CBR). Secondary endpoints included safety, tolerability, and pharmacodynamic end points. Results: Twenty-seven women were recruited, four discontinued treatment without response assessment. Based on local reporting, the CBR was 18.5% (95% CI 6.3–38.1%) on an intent to treat basis, increasing to 21.7% (95% CI 7.4–43.7%) by per-protocol analysis. In those patients that achieved clinical benefit (n = 5), the median (interquartile range) duration was 9.4 months (8.1–11.3) months. The median progression-free survival time was 2.7 months (95% CI 2.5–4.6) in both the ITT and per-protocol analyses. The most frequently reported grade 3/4 toxicities were dry skin (28%), nausea (13%), fatigue (13%), diarrhoea (8%), headache (7%), anorexia (7%) and lethargy (7%). Conclusions: The addition of Irosustat to aromatase inhibitor therapy resulted in clinical benefit with an acceptable safety profile. The study met its pre-defined success criterion by both local and central radiological assessments

    Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder

    Full text link

    The steroid sulfatase inhibitor COUMATE attenuates rather than enhances access of dehydroepiandrosterone sulfate to the brain in the mouse

    Get PDF
    Intraperitoneal injection of adult male mice with the neuroactive steroid dehydroepiandrosterone sulfate (DHEAS) at 1 and 40 mg/kg caused dose-dependent increases in the concentration of both this compound and its corresponding free steroid DHEA in brain within 1 h of injection. Pretreatment of these animals for 24 h with the steroid sulfatase inhibitor COUMATE at a dose (10 mg/kg, p.o.) shown previously to cause almost complete inhibition of this enzyme in liver and brain was expected to increase the amount of the DHEAS dose reaching the brain. Surprisingly however, the increases in brain concentrations of DHEAS and DHEA after injection of DHEAS i.p. were attenuated by pretreatment with COUMATE. The results suggest that the arylsulfamate based steroid sulfatase inhibitors such as COUMATE interfere with the influx of the DHEAS anion into the brain

    Characterization and Regulation of Steroid Sulfatase in the Human MG-63 Pre-osteoblastic Cell Line

    Get PDF
    The importance of estrogen in bone regulation is exemplified by the reduction in bone density at the onset of menopause. Post-menopausal women have low levels of estrogens, but high levels of inactive sulfated steroids. These can be converted to active steroids by steroid sulfatase (STS), which is a microsomal enzyme found in many tissues. STS desulfates common steroids such as dehydroepiandrosterone sulfate and estrone sulfate, the products of which can serve as precursors for active estrogens. We sought to characterize the activity and expression of STS in human bone cells with the idea that increasing STS expression in bone could offset low bone density. STS activity was found to be relatively high in MG-63 pre-osteosarcoma cells, indicating that these cells can produce active estrogens from precursors. STS activity was blocked by the known inhibitors EMATE and 667 Coumate. In addition, cell growth was stimulated by addition of sulfated steroids. STS activity and expression were examined in pre-osteoblastic and differentiated MG-63 cells over a 21-day period. STS activity and expression were higher in pre-osteoblastic cells than in differentiated cells. The STS decline was found to be due to the presence of the glucocorticoid dexamethasone in the differentiation medium. Inhibition of the glucocorticoid receptor with RU-486 blocked the decline in STS activity. Results from a collaborator suggested that NF-κB might regulate STS transcription. The NF-κB activators LPS and PMA increased STS expression, which was lowered in the presence of the NF-κB inhibitor BAY. Glucocorticoids and NF-κB are antagonistic to each other with regard to immune responses. Thus, steroid sulfatase appears to be regulated like an immune response protein in pre-osteoblastic cells. The significance of this for bone physiology is unclear. Our data indicate that steroid sulfatase is present in bone cells and that it can influence bone cell growth by converting inactive sulfated steroids to estrogenic forms. Furthermore, STS expression is regulated by glucocorticoid and NF-κB pathways. Manipulation of STS expression via these pathways may lead to a potential treatment for osteoporosis

    Characterization of iodothyronine sulfatase activities in human and rat liver and placenta

    Get PDF
    In conditions associated with high serum iodothyronine sulfate concentrations, e.g. during fetal development, desulfation of these conjugates may be important in the regulation of thyroid hormone homeostasis. However, little is known about which sulfatases are involved in this process. Therefore, we investigated the hydrolysis of iodothyronine sulfates by homogenates of V79 cells expressing the human arylsulfatases A (ARSA), B (ARSB), or C (ARSC; steroid sulfatase), as well as tissue fractions of human and rat liver and placenta. We found that only the microsomal fraction from liver and placenta hydrolyzed iodothyronine sulfates. Among the recombinant enzymes only the endoplasmic reticulum-associated ARSC showed activity toward iodothyronine sulfates; the soluble lysosomal ARSA and ARSB were inactive. Recombinant ARSC as well as human placenta microsomes hydrolyzed iodothyronine sulfates with a substrate preference for 3,3'-diiodothyronine sulfate (3,3'-T(2)S) approximately T(3) sulfate (T(3)S) >> rT(3)S approximately T(4)S, whereas human and rat liver microsomes showed a preference for 3,3'-T(2)S > T(3)S >> rT(3)S approximately T(4)S. ARSC and the tissue microsomal sulfatases were all characterized by high apparent K(m) values (>50 microM) for 3,3'-T(2)S and T(3)S. Iodothyronine sulfatase activity determined using 3,3'-T(2)S as a substrate was much higher in human liver microsomes than in human placenta microsomes, although ARSC is expressed at higher levels in human placenta than in human liver. The ratio of estrone sulfate to T(2)S hydrolysis in human liver microsomes (0.2) differed largely from that in ARSC homogenate (80) and human placenta microsomes (150). These results suggest that ARSC accounts for the relatively low iodothyronine sulfatase activity of human placenta, and that additional arylsulfatase(s) contributes to the high iodothyronine sulfatase activity in human liver. Further research is needed to identify these iodothyronine sulfatases, and to study the physiological importance of the reversible sulfation of iodothyronines in thyroid hormone metabolism

    Structural Insights into Endobiotic Reactivation by Human Gut Microbiome-Encoded Sulfatases

    Get PDF
    Phase II drug metabolism inactivates xenobiotics and endobiotics through the addition of either a glucuronic acid or sulfate moiety prior to excretion, often via the gastrointestinal tract. While the human gut microbial β-glucuronidase enzymes that reactivate glucuronide conjugates in the intestines are becoming well characterized and even controlled by targeted inhibitors, the sulfatases encoded by the human gut microbiome have not been comprehensively examined. Gut microbial sulfatases are poised to reactivate xenobiotics and endobiotics, which are then capable of undergoing enterohepatic recirculation or exerting local effects on the gut epithelium. Here, using protein structure-guided methods, we identify 728 distinct microbiome-encoded sulfatase proteins from the 4.8 million unique proteins present in the Human Microbiome Project Stool Sample database and 1766 gut microbial sulfatases from the 9.9 million sequences in the Integrated Gene Catalogue. We purify a representative set of these sulfatases, elucidate crystal structures, and pinpoint unique structural motifs essential to endobiotic sulfate processing. Gut microbial sulfatases differentially process sulfated forms of the neurotransmitters serotonin and dopamine, and the hormones melatonin, estrone, dehydroepiandrosterone, and thyroxine in a manner dependent both on variabilities in active site architecture and on markedly distinct oligomeric states. Taken together, these data provide initial insights into the structural and functional diversity of gut microbial sulfatases, providing a path toward defining the roles these enzymes play in health and disease

    Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder

    Get PDF
    Background The 39,XY*O mouse, which lacks the orthologues of the ADHD and autism candidate genes STS (steroid sulphatase) and ASMT (acetylserotonin O-methyltransferase), exhibits behavioural phenotypes relevant to developmental disorders. The neurobiology underlying these phenotypes is unclear, although there is evidence for serotonergic abnormalities in the striatum and hippocampus. Methods Using microarray and quantitative gene expression analyses, and gas chromatography–mass spectrometry, we compared brain gene expression and steroid biochemistry in wildtype (40,XY) and 39,XY*O adult mice to identify non-obvious genetic and endocrine candidates for between-group differences in behaviour and neurochemistry. We also tested whether acute STS inhibition by COUMATE in wildtype (40,XY) adult male mice recapitulated any significant gene expression or biochemical findings from the genetic comparison. Data were analysed by unpaired t-test or Mann Whitney U-test depending on normality, with a single factor of KARYOTYPE. Results Microarray analysis indicated seven robust gene expression differences between the two groups (Vmn2r86, Sfi1, Pisd-ps1, Tagap1, C1qc, Metap1d, Erdr1); Erdr1 and C1qc expression was significantly reduced in the 39,XY*O striatum and hippocampus, whilst the expression of Dhcr7 (encoding 7-dehydrocholesterol reductase, a modulator of serotonin system development), was only reduced in the 39,XY*O hippocampus. None of the confirmed gene expression changes could be recapitulated by COUMATE administration. We detected ten free, and two sulphated steroids in 40,XY and 39,XY*O brain; surprisingly, the concentrations of all of these were equivalent between groups. Conclusions Our data demonstrate that the mutation in 39,XY*O mice: i) directly disrupts expression of the adjacent Erdr1 gene, ii) induces a remarkably limited suite of downstream gene expression changes developmentally, with several of relevance to associated neurobehavioural phenotypes and iii) does not elicit large changes in brain steroid biochemistry. It is possible that individuals with STS/ASMT deficiency exhibit a similarly specific pattern of gene expression changes to the 39,XY*O mouse, and that these contribute towards their abnormal neurobiology. Future work may focus on whether complement pathway function, mitochondrial metabolism and cholesterol biosynthesis pathways are perturbed in such subjects
    corecore