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In conditions associated with high serum iodothyronine sul-
fate concentrations, e.g. during fetal development, desulfa-
tion of these conjugates may be important in the regulation of
thyroid hormone homeostasis. However, little is known about
which sulfatases are involved in this process. Therefore, we
investigated the hydrolysis of iodothyronine sulfates by ho-
mogenates of V79 cells expressing the human arylsulfatases A
(ARSA), B (ARSB), or C (ARSC; steroid sulfatase), as well as
tissue fractions of human and rat liver and placenta. We found
that only the microsomal fraction from liver and placenta
hydrolyzed iodothyronine sulfates. Among the recombinant
enzymes only the endoplasmic reticulum-associated ARSC
showed activity toward iodothyronine sulfates; the soluble
lysosomal ARSA and ARSB were inactive. Recombinant ARSC
as well as human placenta microsomes hydrolyzed iodothy-
ronine sulfates with a substrate preference for 3,3�-diiodothy-
ronine sulfate (3,3�-T2S) � T3 sulfate (T3S) �� rT3S � T4S,
whereas human and rat liver microsomes showed a prefer-

ence for 3,3�-T2S > T3S �� rT3S � T4S. ARSC and the tissue
microsomal sulfatases were all characterized by high appar-
ent Km values (>50 �M) for 3,3�-T2S and T3S. Iodothyronine
sulfatase activity determined using 3,3�-T2S as a substrate was
much higher in human liver microsomes than in human pla-
centa microsomes, although ARSC is expressed at higher lev-
els in human placenta than in human liver. The ratio of es-
trone sulfate to T2S hydrolysis in human liver microsomes
(0.2) differed largely from that in ARSC homogenate (80) and
human placenta microsomes (150). These results suggest that
ARSC accounts for the relatively low iodothyronine sulfatase
activity of human placenta, and that additional arylsulfa-
tase(s) contributes to the high iodothyronine sulfatase activ-
ity in human liver. Further research is needed to identify
these iodothyronine sulfatases, and to study the physiological
importance of the reversible sulfation of iodothyronines in
thyroid hormone metabolism. (Endocrinology 143: 814–819,
2002)

SULFATION IS AN important metabolic pathway that
facilitates the inactivation and elimination of lipophilic

exogenous and endogenous compounds, including thyroid
hormones, by increasing their water solubility (1–3). A more
important purpose for the sulfation of thyroid hormones is
to facilitate their degradation by the type I iodothyronine
deiodinase (D1) (4–7). D1 catalyzes the outer ring deiodina-
tion (activation) of T4 to T3 as well as the inner ring deiodi-
nation (IRD; inactivation) of T4 to rT3 and of T3 to 3,3�-
diiodothyronine (3,3�-T2) (5). As IRD of sulfated T4 and T3 by
D1 is accelerated 40- to 200-fold, whereas outer ring deio-
dination of T4 sulfate (T4S) is completely blocked (4–7), sul-
fation has an important role in the irreversible inactivation of
thyroid hormone by D1. However, when D1 activity is low
or clearance of iodothyronine sulfates is otherwise impaired,
inactivation of thyroid hormone by sulfation may be revers-
ible due to the expression of arylsulfatases in different tissues
(8–10) or the presence of bacterial sulfatases in the intestine
(11). Strongly elevated iodothyronine sulfate concentrations
have been found in fetal and neonatal serum and in amniotic
fluid in humans and sheep (12–16). Thyroid hormone is
essential for the normal fetal development of several organs,

in particular the brain (17–20). Therefore, it has been spec-
ulated that these iodothyronine sulfates, especially T3S, func-
tion as a pool of inactive thyroid hormone from which the
active hormone is released in a tissue-specific and develop-
ment stage-dependent manner (7, 9, 12, 14, 21). Iodothyro-
nine sulfatase activities are present in human fetal liver and
lung, and become undetectable in lung after birth (22). In rats,
which are born immature compared with humans, hepatic
T3S sulfatase activity progressively increases after birth until
2 months of age (23).

Hydrolysis of sulfate conjugates is an enzymatic process,
and multiple arylsulfatases have now been identified (24).
Arylsulfatase A (ARSA) and arylsulfatase B (ARSB) are sol-
uble enzymes, localized in lysosomes. To date, sulfated gly-
colipids have been identified as endogenous substrates for
ARSA, whereas ARSB has a known substrate specificity for
dermatan sulfate and chondroitin sulfate (25). These sulfa-
tases are widely distributed, although in the pig ARSA ac-
tivity is 20–60 times higher in the thyroid than in other
tissues (26). Arylsulfatase C (ARSC), also termed steroid
sulfatase, is located in the endoplasmic reticulum, and hy-
drolyzes steroid sulfates such as dehydroepiandrosterone
sulfate (DHEAS), estrone sulfate (E1S), and cholesterol sul-
fate (25). We have recently demonstrated that iodothyronines
are good substrates for estrogen sulfotransferase (27). There-
fore, it seems logical to assume that iodothyronine sulfates
are also good substrates for the steroid sulfatase ARSC. This
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arylsulfatase C; BTP, bis-Tris propane; DHEAS, dehydroepiandros-
terone sulfate; E1S, estrone sulfate; IRD, inner ring deiodination; PTU,
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isoenzyme is expressed in many tissues, including placenta
and liver (28–31). In the placenta, ARSC plays a major role
in estrogen biosynthesis from DHEAS, which is mainly pro-
duced in the fetal adrenal gland and is converted to 16�-
hydroxy-DHEAS by the fetal liver (32). Recently, a group of
novel ARS genes was identified, clustered on Xp22.3 (33–35),
near the ARSC gene. ARSD� and -� and ARSF have been
localized in the endoplasmic reticulum, whereas ARSE is
located in the Golgi apparatus (35, 36). The endogenous
substrates for these arylsulfatases remain to be identified,
although neither ARSE nor ARSF hydrolyzes steroid sulfates
(33–36). ARSD does not appear to act as a conventional
arylsulfatase, as no such activity has yet been determined for
the recombinant protein (34, 35). They also differ from ARSC
in that they are thermolabile.

Earlier studies demonstrated T3S sulfatase activities in hu-
man and rat liver microsomes and in rat hepatocytes (9, 21).
However, not much is known about which sulfatases are
responsible for the hydrolysis of sulfated iodothyronines.
Therefore, we studied the arylsulfatases ARSA, ARSB, and
ARSC and the sulfatase activities in human and rat liver and
placenta using iodothyronine sulfates as substrates to deter-
mine whether these arylsulfatases are involved in hydrolysis
of thyroid hormone sulfates in tissues.

Materials and Methods
Materials

Rat livers were isolated from adult male Wistar rats, and normal
human liver was obtained at surgery for liver tumors. Normal human
placental tissue was obtained at spontaneous, full-term delivery, and rat
placenta was obtained after cesarean section at 20 d gestational age.
Approval was obtained from institutional committees. Cytosolic and
microsomal fractions of the different tissues were prepared as previ-
ously described (4, 37). Human ARSA, ARSB, and ARSC cDNA clones
were provided by Prof. K. von Figura (University of Göttingen, Göt-
tingen, Germany) and expressed in V79 Chinese hamster lung fibroblast
cells as previously described (25).

T4, rT3, 3,3�-T2, and 3-iodothyronine were obtained from Henning
Berlin GmbH & Co. (Berlin, Germany); T3, E1S, 6-n-propyl-2-thiouracil
(PTU) and bis-Tris propane (BTP) were purchased from Sigma (St. Louis,
MO); [3�,5�-125I]T4, [3�-125I]T3, and [3H]E1S were obtained from Amer-
sham Pharmacia Biotech (Little Chalfont, UK); [3�,5�-125I]rT3 and [3,3�-
125I]T2 were prepared by radioiodination of 3,3�-T2 and 3-iodothyronine,
respectively (5). 125I-Labeled and unlabeled T4S, rT3S, T3S, and 3,3�-T2S
were prepared by reaction of labeled and unlabeled T4, rT3, T3, and
3,3�-T2 with chlorosulfonic acid in dimethylformamide. They were pu-
rified by LH-20 chromatography (38).

Sulfatase assay

Iodothyronine sulfatase activity was assayed by incubation of 0.1 �m
unlabeled and 100,000 cpm 125I-labeled T4S, rT3S, T3S, or 3,3�-T2S and 0.1
or 1 mm PTU (to block D1 activity) for 60 min at 37 C with the indicated
amounts of tissue cytosol or microsomes or V79 cell homogenate in 0.2
ml buffer. Optimal assay conditions for the different sulfatases were
determined by testing different buffers (0.1 m sodium acetate, sodium
citrate, Tris-HCl, sodium phosphate, or BTP-HCl), pH values, and tem-
peratures. The reactions were started by the addition of enzyme in
ice-cold buffer and were stopped by the addition of 0.8 ml 0.1 m HCl.
The mixtures were analyzed for T4, rT3, T3, or 3,3�-T2 formation by
chromatography on Sephadex LH-20 minicolumns as previously de-
scribed (39). Desulfation in complete reaction mixtures was corrected for
background radioactivity detected in the corresponding Sephadex
LH-20 fractions of control incubations without enzyme.

Estrogen sulfatase activity was analyzed by incubation of 0.1 �m
[3H]E1S for 0 (blank) or 30 min at 37 C with the indicated amounts of

tissue microsomes or V79 cell homogenate in 0.1 ml 0.1 m Tris-HCl (pH
7.2). The reactions were stopped by the addition of 0.4 ml 0.1 m Tris-HCl
(pH 8.8), and the mixtures were extracted with 2.5 ml chloroform. Sulfate
hydrolysis was quantified by counting 0.25 ml of the aqueous phase. The
amount of E1S still present in complete reaction mixtures after 30 min
at 37 C was compared with the amount of E1S present in the corre-
sponding nonincubated reaction mixtures.

Results

Figure 1 shows the pH profiles of the desulfation of 0.1 �m
3,3�-T2S by rat liver and human liver microsomes and re-
combinant human ARSC obtained using acetate and BTP-
HCl buffers. Rat liver microsomal sulfatase showed an op-
timum at pH 6.0–6.5 (Fig. 1A), human liver microsomal
sulfatase at pH 6.0–7.5 (Fig. 1B), and ARSC at approximately
pH 7.0 (Fig. 1C). At neutral pH, the different enzymes
showed similar sulfatase activities in BTP-HCl and Tris-HCl
buffers, but much lower activities in phosphate buffer (Fig.
2A). At acidic pH values, incubations of the different en-
zymes, in particular human liver, in citrate buffer strongly
inhibited their 3,3�-T2S sulfatase activities compared with
incubations in acetate buffer (Fig. 2B). Similar results were
obtained in buffers with or without 2 mm EDTA (not shown).

Figure 3 demonstrates the effects of temperature on the
desulfation of 0.1 �m 3,3�-T2S by human and rat liver mi-
crosomes. The optimal temperature for human liver micro-
somes is 50 C, and that for rat liver microsomes is 70 C or
higher.

Figure 4 presents the desulfation of 0.1 �m T4S, T3S, rT3S,
and 3,3�-T2S by recombinant human ARSC and human and
rat placenta and liver microsomes at pH 7.2. ARSC showed
similar activities toward 3,3�-T2S and T3S, whereas both rT3S
and T4S were poor substrates for this enzyme. The substrate
specificity of human placenta microsomes was similar to that
of ARSC. Very high desulfation rates were observed in hu-
man liver microsomes, with a strong substrate preference for
3,3�-T2S, which was hydrolyzed about 4 times faster than T3S
(i.e. desulfation rates of �7.2 and 1.8 pmol/min�mg) and
more than 10 times faster than the relatively poor substrates
rT3S and T4S. Rat liver microsomes also showed a substrate
preference for 3,3�-T2S, which was desulfated twice as fast as
T3S; in rat placenta microsomes low desulfation rates (i.e.
�0.1 pmol/min�mg) were observed with all iodothyronine
sulfates. We also tested steroid sulfatase activities of ARSC
and of human placenta and liver microsomes. Table 1 com-
pares E1S and T2S sulfatase activities of ARSC and the dif-
ferent human tissue microsomes. The low ratio of E1S to T2S
hydrolysis in liver microsomes differs largely from the high
preference for E1S vs. T2S hydrolysis by ARSC and human
placenta microsomes. Tested at the optimum pH 5.5, soluble
ARSA and ARSB as well as rat and human liver cytosols
showed very low activity toward all iodothyronine sulfates
(results not shown).

Figure 5 shows the desulfation of 3,3�-T2S by ARSC, hu-
man liver, and human placenta microsomes as a function of
the substrate concentration. As no saturation was reached
even at the highest concentration of 50 �m, Km and maximum
velocity values could not be calculated. Similar results were
obtained when T3S was used as substrate. Apparently all of
these sulfatases have low affinity for iodothyronine sulfates,
with Km values greater than 50 �m.
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Discussion

Normally, serum T4S and T3S levels are low (12, 40, 41).
This is explained by the very rapid deiodination of these
conjugates, as sulfation strongly induces the D1-catalyzed
IRD of both T4 and T3 (7). However, under certain (patho)-
physiological conditions, e.g. during fetal development and

nonthyroidal illness, possibly due to diminished D1 activity,
plasma concentrations of iodothyronine sulfates are in-
creased (12, 13, 16, 41). T3S is considered to be biologically
inert, as it has lost its affinity for the T3 receptors (42). It could,
however, serve as a reservoir from which active thyroid
hormone is regenerated by tissue sulfatases or bacterial sul-
fatases in the intestine (8–11).

Recently, much research has been performed to develop
inhibitors of steroid sulfatase (ARSC) because of their po-
tential for the treatment of estrogen-dependent breast can-
cers (43–54). These studies have revealed some important
structure-activity relations for compounds binding to the
active site of ARSC. Furthermore, the crystal structures of
arylsulfatases A and B have recently been elucidated (55, 56).
Although the overall amino acid sequence homology is only
about 20–30% between different arylsulfatases, the protein
structures of all sulfatases share some important features.
The active site of eukaryotic sulfatases contains a metal ion,
probably Mg2� (56, 57), and a formylglycine, generated by
posttranslational modification of a cysteine residue (58–61).
Residues interacting with Mg2� and formylglycine are con-
served among the members of the sulfatase family. Uhlhorn-
Dierks et al. (57) proposed a catalytic mechanism for the
hydrolysis of sulfates by sulfatases based on their structure
and mutational analyses. An intermediate enzyme-sulfate
complex is formed by the covalent binding of sulfate to the
hydrated formylglycine (i.e. dihydroxyalanine). When the
active site formylglycine is replaced by a serine (i.e. hydroxy-

FIG. 1. Effects of pH on 3,3�-T2S desulfation by rat liver or human
liver microsomes, or ARSC. Reaction conditions were 0.1 �M 125I-
labeled 3,3�-T2S, 0.25 (A and C) or 0.05 (B) mg protein/ml, 0.1 mM
PTU, and 60-min incubation in 0.1 M sodium acetate or BTP-HCl.
Results are the means of triplicate determinations from a repre-
sentative experiment.

FIG. 2. Effects of buffer on 3,3�-T2S desulfation by rat liver, and
human liver microsomes, and ARSC at pH 7.2 (A) or 5.5 (B). Reaction
conditions were 0.1 �M 125I-labeled 3,3�-T2S, 0.25 (rat liver and ARSC)
or 0.05 (human liver) mg protein/ml, 0.1 mM PTU, and 60-min incu-
bation in 0.1 M sodium phosphate (pH 7.2), 0.1 M Tris-HCl (pH 7.2),
0.1 M sodium acetate (pH 5.5), or 0.1 M sodium citrate (pH 5.5).
Results are the means of triplicate determinations from a repre-
sentative experiment.
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alanine), the intermediate enzyme-sulfate complex is trapped
(62), which indicates that the second hydroxyl group of hy-
drated formylglycine is needed for sulfate release (57, 62).

Crystallographic analyses (55, 56, 63) also revealed struc-
tural homology between alkaline phosphatases and arylsul-
fatases. A functional relationship between the enzymes was
shown by O’Brien et al. (64), who demonstrated that alkaline
phosphatase exhibits a low level of sulfatase activity. They
also showed inhibition of the phosphatase as well as the
sulfatase activities of alkaline phosphatase by inorganic
phosphate (64). Anderson et al. reported on steroidal and
nonsteroidal phosphates that inhibited steroid sulfatase ac-

tivity (43). We demonstrated inhibition of the iodothyronine
sulfatase activities by inorganic phosphate and citrate. Per-
haps these anions block the active site of iodothyronine sul-
fatases. An alternative explanation is that citrate and phos-
phate inhibit iodothyronine sulfatase activity by complexing
the enzyme-bound Mg2�. However, we did not observe in-
hibition of iodothyronine sulfatase activity in the presence of
EDTA. Our results strongly suggest that iodothyronine sul-
fatase activities determined in phosphate buffers, as reported
by others (9, 23), represent a marked underestimation of true
enzyme levels.

Whereas significant sulfatase activity toward 3,3�-T2S and
T3S was found in human placenta, in rat placenta activity
toward these iodothyronine sulfates was much lower. This
difference in activity may be due to the species difference. It
should be noted, however, that whereas the rat placental
tissue used in this study consisted of both the fetal as well as
the maternal side of the placenta, the human placental tissue
mainly consisted of the fetal side of the placenta, as most of
the maternal side (decidua) is not expelled at spontaneous
delivery. Furthermore, the rat placenta was isolated at em-
bryonic d 20, i.e. 1 d before birth, whereas human placenta
was obtained at full-term delivery. Therefore, besides the
species difference, these differences in tissue composition
and developmental stage may also contribute to the different
sulfatase activities found in human and rat placenta.

We showed a pH optimum for rat liver microsomes at pH
6.0–6.5, for human liver microsomes at pH 6.0–7.5, and for
arylsulfatase C at pH 7.0. The broader peak for the human
and rat liver microsomes might indicate that different sul-
fatases, with different pH optima, are involved in the de-
sulfation of 3,3�-T2. Kung et al. (9) observed T3S sulfatase
activities in human and rat liver microsomes. E1S and
DHEAS, both substrates for ARSC, inhibited T3S hydrolysis
with IC50 values of approximately 10 �m. The fact that high
levels of E1S only partially inhibited T3S desulfation,
whereas high DHEAS concentrations produced complete in-
hibition, supports the involvement of multiple sulfatases,
possibly including ARSC (9). However, these analyses were
performed in phosphate buffer (9), which may strongly affect
the contributions of different sulfatases.

The optimal temperature of iodothyronine sulfatase ac-
tivities is 50 C in human liver microsomes and at least 70 C
in rat liver microsomes. The high thermostability of these
sulfatases is in agreement with the temperature optimum of
60 C for ARSC (65). ARSC and the sulfatase activities in

FIG. 3. Effects of temperature on desulfation of 3,3�-T2S by human or
rat liver microsomes. Reaction conditions were 0.1 �M [3,3�-125I]T2S,
0.25 (rat liver) or 0.025 (human liver) mg protein/ml, 1 mM PTU, and
60-min incubation in 0.1 M Tris-HCl (pH 7.2) at 20�70 C. Results are
the means of two closely agreeing experiments.

FIG. 4. Desulfation of iodothyronine sulfates by ARSC, human or rat
liver microsomes, or human or rat placenta microsomes. Reaction
conditions were 0.1 �M 125I-labeled T4S, T3S, rT3S, or 3,3�-T2S; 0.25
(ARSC and rat liver), 0.05 (human liver), or 0.5 (human and rat
placenta) mg protein/ml; 0.1 mM PTU; and 60-min incubation in 0.1
M Tris-HCl (pH 7.2). Results are the means of triplicate determina-
tions from a representative experiment.

TABLE 1. Hydrolysis of E1S and 3,3�-T2S by human ARSC, liver
and placenta

Enzyme source

Hydrolysis

E1S 3,3�-T2S
E1S/3,3�-T2S

(pmol/min�mg)

ARSC-V79 homogenate 100 1.3 81
Human liver microsomes 1.6 7.2 0.21
Human placenta microsomes 52 0.34 150

Reaction conditions were: 0.1 �M 3,[3�-125I]T2S, 0.1 mM PTU and
0.25 (ARSC), 0.05 (liver) or 0.5 (placenta) mg protein/ml, or 0.1 �M
[3H]E1S and 0.005 (ARSC), 0.5 (liver) or 0.01 (placenta) mg protein/
ml, and 60-min incubation in 0.1 M Tris-HCl (pH 7.2). Results are the
means of triplicate determinations from a representative experiment.
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human liver and placenta microsomes have high Km values
for iodothyronine sulfates. The different substrate specific-
ities of the iodothyronine sulfatase activity in human liver vs.
ARSC and placenta as well as the finding that the ratio of E1S
to T2S hydrolysis in human liver differs greatly from that in
ARSC and placenta suggest that in human liver additional
sulfatases to ARSC contribute to the hydrolysis of iodothy-
ronine sulfates, in particular T2S. However, ARSD, ARSE,
and ARSF are not likely candidates, as 1) both ARSE and
ARSF are thermolabile, whereas iodothyronine sulfatase ac-
tivity appears thermostable (33, 34); and 2) ARSD does not
possess arylsulfatase activity (34, 35).

It is remarkable that although 3,3�-T2 is the preferred sub-
strate for sulfotransferases, 3,3�-T2S is the preferred substrate
for (human liver) sulfatase. Thus, reversible sulfation/de-
sulfation seems a more important metabolic pathway for
3,3�-T2 than for T4, T3, and rT3. This may reflect restrictions
in the active sites of the sulfotransferase and sulfatase to
accommodate bulky substrates with more than two iodine
substituents. However, a physiological role for 3,3�-T2 is not
excluded. Although its affinity for the nuclear thyroid hor-
mone receptors is low (17), 3,3�-T2 has been shown to stim-
ulate mitochondrial respiration in different tissues (66).

In conclusion, we have identified arylsulfatase C as a high
Km iodothyronine sulfatase that is most likely the main en-
zyme responsible for the hydrolysis of iodothyronine sul-
fates in human placenta and to some extent in human liver.
Further investigations are needed to determine the possible
importance of other, still unidentified, microsomal sulfatases
in hydrolysis of iodothyronine sulfates in the liver and per-
haps other tissues. This information may contribute to the
understanding of the role of sulfation-desulfation in the reg-
ulation of thyroid hormone bioactivity, in particular during
fetal development.
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