3 research outputs found

    AI-Driven Model for Automatic Emphysema Detection in Low-Dose Computed Tomography Using Disease-Specific Augmentation

    Get PDF
    The objective of this study is to evaluate the feasibility of a disease-specific deep learning (DL) model based on minimum intensity projection (minIP) for automated emphysema detection in low-dose computed tomography (LDCT) scans. LDCT scans of 240 individuals from a population-based cohort in the Netherlands (ImaLife study, mean age 卤 SD = 57 卤 6 years) were retrospectively chosen for training and internal validation of the DL model. For independent testing, LDCT scans of 125 individuals from a lung cancer screening cohort in the USA (NLST study, mean age 卤 SD = 64 卤 5 years) were used. Dichotomous emphysema diagnosis based on radiologists' annotation was used to develop the model. The automated model included minIP processing (slab thickness range: 1 mm to 11 mm), classification, and detection maps generation. The data-split for the pipeline evaluation involved class-balanced and imbalanced settings. The proposed DL pipeline showed the highest performance (area under receiver operating characteristics curve) for 11 mm slab thickness in both the balanced (ImaLife = 0.90 卤 0.05) and the imbalanced dataset (NLST = 0.77 卤 0.06). For ImaLife subcohort, the variation in minIP slab thickness from 1 to 11 mm increased the DL model's sensitivity from 75 to 88% and decreased the number of false-negative predictions from 10 to 5. The minIP-based DL model can automatically detect emphysema in LDCTs. The performance of thicker minIP slabs was better than that of thinner slabs. LDCT can be leveraged for emphysema detection by applying disease specific augmentation

    Implementation of a 3D CNN for COPD classification

    Get PDF
    Segons les prediccions de la Organitzaci贸 Mundial de la Salut (OMS) pels voltants del 2030 la Malaltia Pulmonar Obstructiva Cr貌nica (MPOC) es convertir谩 en la tercera causa de mort en tot el m贸n. L鈥橫POC 茅s una patologia que afecta a les vies respirat貌ries i als pulmons. Avui en dia esdev茅 cr贸nica i incurable per貌, 茅s una malaltia tractable i prevenible. Fins ara les proves de diagn貌stic usades per a detectar l鈥橫POC es basen en l鈥檈spirometria, aquesta prova, tot i indicar el grau d鈥檕bstrucci贸 al pas de l鈥檃ire que es produeix en els pulmons, sovint no 茅s molt fiable. 脡s per aquest motiu que s鈥檈stan comen莽ant a usar t猫cniques basades en algorismes de Deep Learning per a la classificai贸 m茅s acurada d鈥檃questa patologia, basant-se en imatges tomogr脿fiques de pacients malalts d鈥橫POC. Les xarxes neuronals convolucionals en tres dimensions (3D-CNN) en s贸n un exemple. A partir de les dades i les imatges obtingudes en l鈥檈studi observacional d鈥橢CLIPSE proporcionades per l鈥檈quip de recerca de BRGE de ISGlobal, s鈥檌mplementa una 3D-CNN per a la classificaci贸 de pacients amb risc d鈥橫POC. Aquest treball t茅 com a objectiu desenvolupar una recerca extensa sobre la recerca actual en aquest 脿mbit i proposa millores per a l鈥檕ptimitzaci贸 i reducci贸 del cost computacional d鈥檜na 3D-CNN per aquest cas d鈥檈studi concret.Seg煤n las predicciones de la Organizaci贸n Mundial de la Salud (OMS), para alrededor del 2030, la Enfermedad Pulmonar Obstructiva Cr贸nica (EPOC) se convertir谩 en la tercera causa de muerte en todo el mundo. La EPOC es una enfermedad que afecta las v铆as respiratorias y los pulmones. En la actualidad, se considera cr贸nica e incurable, pero es una enfermedad tratable y prevenible. Hasta ahora, las pruebas de diagn贸stico utilizadas para detectar la EPOC se basan en la espirometr铆a. Esta prueba, a pesar de indicar el grado de obstrucci贸n en el flujo de aire que ocurre en los pulmones, a menudo no es muy confiable. Es por esta raz贸n que se est谩n empezando a utilizar t茅cnicas basadas en algoritmos de Deep Learning para una clasificaci贸n m谩s precisa de esta patolog铆a, utilizando im谩genes tomogr谩ficas de pacientes enfermos de EPOC. Las redes neuronales convolucionales en tres dimensiones (3D-CNN) son un ejemplo de esto. A partir de los datos y las im谩genes obtenidas en el estudio observacional ECLIPSE proporcionado por el equipo de investigaci贸n de BRGE de ISGlobal, se implementa una 3D-CNN para la clasificaci贸n de pacientes con riesgo de EPOC. Este trabajo tiene como objetivo desarrollar una investigaci贸n exhaustiva sobre la investigaci贸n actual en este campo y propone mejoras para la optimizaci贸n y reducci贸n del costo computacional de una 3D-CNN para este caso de estudio concreto.According to predictions by the World Health Organization (WHO), by around 2030, Chronic Obstructive Pulmonary Disease (COPD) will become the third leading cause of death worldwide. COPD is a condition that affects the respiratory tract and lungs. Currently, it is considered chronic and incurable, but it is a treatable and preventable disease. Up to now, diagnostic tests used to detect COPD have been based on spirometry. Despite indicating the degree of airflow obstruction in the lungs, this test is often not very reliable. That is why techniques based on Deep Learning algorithms are being increasingly used for more accurate classification of this pathology, based on tomographic images of COPD patients. Three-dimensional Convolutional Neural Networks (3D-CNN) are an example of such techniques. Based on the data and images obtained in the observational study called ECLIPSE, provided by the research team at BRGE of ISGlobal, a 3D-CNN is implemented for the classification of patients at risk of COPD. This work aims to conduct extensive research on the current state of research in this field and proposes improvements for the optimization and reduction of the computational cost of a 3D-CNN for this specific case study
    corecore