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Abstract
The objective of this study is to evaluate the feasibility of a disease-specific deep learning (DL) model based on minimum 
intensity projection (minIP) for automated emphysema detection in low-dose computed tomography (LDCT) scans. LDCT 
scans of 240 individuals from a population-based cohort in the Netherlands (ImaLife study, mean age ± SD = 57 ± 6 years) 
were retrospectively chosen for training and internal validation of the DL model. For independent testing, LDCT scans 
of 125 individuals from a lung cancer screening cohort in the USA (NLST study, mean age ± SD = 64 ± 5 years) were 
used. Dichotomous emphysema diagnosis based on radiologists’ annotation was used to develop the model. The automated 
model included minIP processing (slab thickness range: 1 mm to 11 mm), classification, and detection maps generation. 
The data-split for the pipeline evaluation involved class-balanced and imbalanced settings. The proposed DL pipeline 
showed the highest performance (area under receiver operating characteristics curve) for 11 mm slab thickness in both the 
balanced (ImaLife = 0.90 ± 0.05) and the imbalanced dataset (NLST = 0.77 ± 0.06). For ImaLife subcohort, the variation 
in minIP slab thickness from 1 to 11 mm increased the DL model’s sensitivity from 75 to 88% and decreased the number of 
false-negative predictions from 10 to 5. The minIP-based DL model can automatically detect emphysema in LDCTs. The 
performance of thicker minIP slabs was better than that of thinner slabs. LDCT can be leveraged for emphysema detection 
by applying disease specific augmentation.

Keywords Early diagnosis · Emphysema · Deep learning · Tomography · Minimum intensity projection

Abbreviations and Acronyms
minIP  Minimum intensity projection
DL  Deep learning
ImaLife  Imaging in lifelines
NLST  National lung cancer screening trail
LDCT  Low-dose computer tomography
HU  Hounsfield unit
LAA  Low attenuation areas

AUC   Area under the receiver operating curve
CI  Confidence interval

Introduction

Chronic obstructive pulmonary disease (COPD) is among 
the leading causes of early deaths worldwide [1], and 70% 
of COPD is estimated to be under-diagnosed [2, 3]. Emphy-
sema is a key component of COPD that is characterized by 
the destruction of lung parenchyma [4]. Usually, emphysema 
is diagnosed at the later stages of the disease’s progression 
and is itself an independent risk factor for lung cancer [5]. 
Therefore, early detection of emphysema is important.

Low-dose computed tomography (LDCT) has been 
shown to be capable of detecting lung cancer and also pro-
vides an opportunity to detect comorbidities like emphysema 
in early stages [6]. However, LDCT contains inherent noise, 
and screening asymptomatic participants means there are 
more normal scans than abnormal ones, making emphysema 
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detection labor-intensive [7, 8]. On CT imaging, emphy-
sematous lung regions with reduced tissue density appear 
as areas of low attenuation. For quantitatively assessing 
emphysema in CT, the low attenuation areas (LAA) under a 
specific cut-off threshold value are computed, for example, 
less than −950 HU. Although this method is widely used, it 
is prone to measurement variation and lacks consensus on an 
optimal cut-off threshold, leading to uncertainty in the diag-
nosis [9]. Past studies have proposed automatic emphysema 
detection using deep learning (DL) algorithms as a solution 
to bypass these issues and reduce the burden on radiologists 
while leveraging the lung cancer screening LDCT dataset 
[10, 11].

The existing supervised machine learning algorithms [12, 
13] or DL algorithms for automatic emphysema detection 
like 3D convolutional neural networks (CNNs) [14], deep-
CNNs with long short-term memory [15], and transfer learn-
ing models like 3D ResNet [16] require disease localized 
annotations, which are difficult to obtain for large datasets, 
or they are primarily developed using HRCT [17, 18]. This 
motivated us to develop an unsupervised model for emphy-
sema in screening studies.

Data augmentations have been suggested as an aid to 
task-specific unsupervised DL models [19]. Typically, data 
augmentation consists of techniques such as geometric 
transformation, kernel filters, and feature augmentation that 
enhance the size and quality of the training dataset for the 
task-specific models [20].

In emphysema diagnostics, minimum intensity projection 
(minIP) is used as a visualization technique to detect low-
density structures (low attenuation areas) in a given com-
puted tomography (CT) volume and emphasize the subtle 
features of trace and mild emphysema [21, 22]. The purpose 
of this study is to test the feasibility of applying minIP as a 
disease-specific augmentation to the proposed unsupervised 
DL algorithm for automatic emphysema detection in LDCT.

Studies have indicated that varying minIP slab thickness 
can affect the qualitative assessment of emphysema [23, 24]. 
However, its effects on DL models remain unknown, and so, 
along with the development of a minIP-based DL algorithm, 
we investigated the effects of different slab thicknesses on 
the DL algorithm for emphysema.

The notable contributions of this study are as follows: 
(1) we used an unsupervised DL algorithm to address the 
annotation-less and class-imbalanced scenarios that nor-
mally characterize lung cancer screening LDCTs; (2) we 
tested the feasibility of using clinical domain knowledge 
such as minIP to emphasize the minimal differences of 
emphysema regions in LDCT for unsupervised learning; (3) 
we explored the effects of different slab thickness of minIP 
on DL algorithm; (4) we generated detection maps to inter-
pret the model predictions and to serve as a quality check; 
and (5) we validated our model on lung cancer screening 

data to check the efficacy of the proposed DL algorithm in 
a real use-case.

Materials and Method

Study Population

Medical ethics committee approval was obtained prior to 
the study. The population for this retrospective study was 
chosen from two different cohorts. The first was a general 
population study in the Netherlands (Imaging in Lifelines 
or ImaLife) designed to find early imaging biomarkers for 
the “big-three” thoracic diseases, COPD, coronary artery 
disease, and lung cancer. The second was the National Lung 
Cancer Screening Trial (NLST) which was carried in the 
USA. It is one of the biggest collections of lung cancer 
screening LDCT data and contains case-specific datasets 
with annotations. The details regarding the eligibility cri-
teria for the participants of ImaLife and NLST have been 
previously described [25, 26].

Acquisition Protocol

The CT acquisition protocol for the ImaLife study par-
ticipants included a low-dose chest CT examination with 
a third-generation dual-source CT scanner (SOMATOM 
Force, Siemens). All the scans were reconstructed in the 
axial plane with filtered back projection using a soft kernel 
(Br40) with a single slice thickness of 1 mm and 0.7-mm 
increments [25]. The NLST subcohort contained LDCT 
scans from various hospitals where multi-detector scanners 
from GE medical systems, Siemens, Toshiba, and Philips 
with varying slice-thicknesses were used to produce the 
scans [27]. A brief overview of CT acquisition and recon-
struction protocols used in the subcohorts is shown in 
Table 1. All the scans used in this study were acquired dur-
ing end-inspiration breath-hold and without the administra-
tion of any contrast media.

Visual Scoring

Each scan from ImaLife was visually scored by one of three 
trained medical professionals (two radiologists with more 
than 10 years of experience and one trained technical physi-
cian). The three readers followed a standard annotation pro-
tocol based on the Fleischner criteria [28]. For this project, 
the visual scoring was consolidated to dichotomous emphy-
sema diagnosis per scan. The scans with no emphysema 
annotation were considered normal, and the severity catego-
ries trace, mild, moderate, confluent, and advanced destruc-
tive emphysema were considered abnormal. For NLST sub-
cohort, radiologists from various hospitals participating in 
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the NLST screening trial had annotated the scans with a yes 
or no diagnosis for emphysema, and this information was 
directly used for the external validation [27].

Quantitative CT Measurements of Emphysema

To measure the quantitative characteristics of the subcohorts 
and evaluate the potential of DL algorithm trained on visual 
scoring over traditional quantitative analysis, we performed 
quantitative CT measurements of emphysema using the 
routinely used automatic densitometry tool (version 4.4.13, 
Aquarius iNtuition, TeraRecon). The lung region was semi-
automatically segmented, and emphysema was quantified as 
the percentage of all lung area (voxels) having attenuation 
lower than −950HU (%LAA). Participants with %LAA were 
divided into two subgroups for analysis, with %LAA ≤ 5% 
categorized as non-emphysema and %LAA > 5% catego-
rized as emphysema [29].

Minimum Intensity Projection (minIP)

MinIP is a volume rendering technique where the voxels 
with lowest attenuation in an image slice are projected to 
form a bidimensional slab. The slab thickness can be varied 
based on the number of slices used. First, the acquired scans 
were re-sampled and normalized to compensate for kernel 
differences [30]. Then the voxels with lowest Hounsfield 
units on each slice of a patient scan were projected to form 
varying slab-thickness. In this study, we generated minIP 
slabs with thicknesses ranging from 1 up to 11 mm in 2-mm 
increments for the comparative evaluation. In routine evalu-
ation for emphysema, radiologists use 5 to 10 mm minIP 
slabs on every slices to carefully check for low attenuation 
areas [21, 31]. Our study evaluated a wider range to assess 
the effectiveness of the DL algorithm for each slab thick-
ness separately. Illustration of emphysema case with differ-
ent MinIP settings with slab thicknesses varying between 1 
and 100 mm is shown in Fig. A of Online Resource 1. The 

algorithm for minIP is implemented in Python and will be 
made available upon request.

Training and Testing Split

For the development of the DL model, the subcohorts were 
divided into three datasets. The first was a dataset containing 
non-emphysema scans for adversarial auto-encoder training, 
the second was a class-balanced dataset for internal valida-
tion, and the third was a class-imbalanced (higher number 
of non-emphysema scans) dataset for external validation. A 
total of 160 (80%) out of 200 non-emphysema scans from 
the ImaLife subcohort were used as the training dataset. The 
internal validation dataset contained the remaining 40 (20%) 
normal scans and 40 emphysema scans from the ImaLife 
subcohort. The complete NLST subcohort was used as the 
external validation dataset. The consort diagram illustrat-
ing the data streams for training and internal and external 
validation is shown in Fig. 1. It is important to note that the 
above procedure was followed separately for each minIP slab 
thickness.

Deep Learning Algorithm

To build a prototype for automatic classification of emphy-
sema in an annotation-less, class-imbalanced environment, 
we used an unsupervised anomaly detection scheme. The 
model takes minIPs of certain slab thickness as inputs with 
a dimension of (512 × 512) × n sampled evenly over the 
height of the lungs, where n represents the number of axial 
slices for each participant. The predictions are then concat-
enated in a sequence of axial slices for the final participant 
score. The model performs classification on the participant 
level, so that for a participant to be classified as negative, 
all slices considered from each participant scan had to be 
classified as non-emphysema. Otherwise, the participant 
was classified as positive. The complete DL algorithm was 
implemented on PyTorch (version 5.1, Python 3.7.1, CUDA 

Table 1  The CT acquisition and 
reconstruction protocol for the 
dataset from ImaLife and NLST

Acquisition parameters ImaLife NLST

Slice thickness (mm) 1 1.0–3.2
Slice increment (mm) 0.7 1.0–2.5
Scan mode High pitch spiral Helical CT
Pitch 3.0/2.5 0.8–1.5
Tube voltage (kVp) 120 120
Tube current (mAs) 20 40–120
API Inspiration breath-hold Inspiratory breath-hold
Window width (HU) 350 400
Window level 50 40
Reconstruction filter Br40 Standard, B30f, FC51, B50f, FC30
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10.1) and executed on a NVIDIA Titan XP GPU with 16 
GB memory.

Model Architecture

The classification network was built using adversarial auto-
encoders, which can be divided into a generator block and a dis-
criminator block (Fig. 2). The first part of the generator block 
consists of an encoder with fully convolutional layers capa-
ble of encoding the high-dimensional image-representation  
into a low-dimensional latent-representation. The second 
part of the generator architecture is a decoder that can decode 
the low-dimensional latent-representation back into a high-
dimensional image-representation (X’) [32]. The generator 
architecture includes sixteen fully convolutional downsam-
pling and upsampling layers with a kernel size of 4 × 4 and 
stride 2, where each layer is followed by batch normalization 
and Leaky ReLU activation functions. The details of archi-
tectural components and the loss functions have been defined 
earlier [33]. The encoder’s feature maps are forwarded to the 
decoder via skip connections with dropout regularization to 
translate intrinsic image information between blocks without 

overfitting. This feature maps from the decoder are fed to the 
discriminator block and the prediction outputs are obtained 
as anomaly score for each participant scan. The discriminator 
block has a similar architecture as the generator’s encoder, 
consisting of eight fully convolutional downsampling layers 
with a kernel size of 4 × 4 and stride 2, where each layer is 
followed by batch normalization and Leaky ReLU activation 
function. We used the discriminative image features from 
the last convolutional layer of the discriminator as a priori 
to decide the candidate/anomaly regions in detection maps. 
Additionally, to train the model with a limited dataset and 
avoid overfitting, we incorporated discriminator heuristics 
augmentation [34].

Model Training

During training, the model was fed with axial slices of given 
minIP slab thickness in which emphysema was not present so 
that the generator and the discriminator combination could 
learn to map the intrinsic properties of non-emphysema lungs. 
The training was based on minimizing the three loss functions, 
namely, contextual loss based on L1 distance (or generator’s 

Fig. 1  The flowchart indicates 
the inclusion criteria and the 
data split for the training and 
internal and external datasets in 
the study. All the scans used for 
current study are the baseline or 
earliest scan available for each 
participant. The quantitative 
CT analysis involved measur-
ing percentage low attenuation 
areas <  −950HU on all three 
datasets
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loss), latent loss (L2 distance measure), and adversarial loss 
(or discriminator’s loss). The definitions of these three loss 
functions have been previously published [32].

The trained network in the inference phase classi-
fies the abnormal emphysema scans as anomalies and 

calculates a prediction score based on generator loss and 
latent loss functions. The prediction score is the predic-
tion probability provided by the discriminator as a con-
tinuous variable ranging from 0 to 1, with higher scores 
corresponding to emphysema detected.

Fig. 2  The workflow of adversarial architecture for automatic emphy-
sema classification and detection in LDCT is shown in the top figure. 
The generator consists of encoder and decoder blocks with 8 layers 
of 4 × 4 kernel size and stride 2. The layers are connected to each 
other over short-ranged connection and long ranged skip connections. 
The discriminator architecture is similar to the encoder architecture. 
The combined learning (training) of generator and discriminator hap-

pens by minimizing the loss functions. The discriminator is a fea-
ture extractor which can extract features within the latent space and 
a classifier that provides prediction score and detection maps during 
inference. The bottom figure shows the properties of each layer and 
are indicated with four hyperparameters in this order: first dimension 
of the kernel × the second dimension of the kernel × the number of 
input channels × the number of output channels at each convolution
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Detection Maps

Along with the prediction scores, the modified network was 
designed to provide binary masks or residual images for 
every test image. This was done by subtracting the input 
image (X) and the generated image (X’) from the generator 
block [35]. Afterwards, these residual images were post-
processed using a lung lobe segmentation algorithm to auto-
matically remove anything apart from the candidate regions 
generating detection maps. We used an available pre-trained 
deep learning algorithm trained on the Lung Tissue Research 
Consortium dataset to perform the post-processing task [36]. 
The detection maps were then superimposed on the input 
image to serve as a quality check.

Model Evaluation and Statistics

Our model evaluation was performed in three different 
stages:

Stage 1: Internal–external validation: The validation 
findings for each minIP slab thickness (1, 3, 5, 7, 9, and 
11 mm) were analyzed using the model’s area under the 
receiver operating curve (AUC), sensitivity, and specific-
ity. Bootstrapping with 1,000 iterations was performed 
on AUC to find the confidence interval (CI). Since the 
external validation dataset was chosen to be a class-
imbalanced dataset, we incorporated the F1 score as one 
of the performance indicators [37]. The optimal minIP 
slab thickness must show high sensitivity and AUC, with 
a low number of false negatives. To compare the per-
formances of the various minIP slab thickness, we used 
McNemar’s test in the IBM SPSS Statistics tool (version 
22) [38].
Stage 2: The inter-rater reliability between visual scor-
ing and %LAA was assessed using Kappa. In addition, 
to test the performance of the visual scoring-based DL 
algorithm on %LAA-based categorization, we used our 
optimal minIP slab thickness.
Stage 3: To enhance the explainability of the DL algo-
rithm, randomly selected 2D detection maps from the DL 
algorithm were compared to the bounding box annota-
tions of the radiologists.

Results

Population Characteristics

The ImaLife subcohort used for training and internal valida-
tion consisted of 240 participants (male = 116 [48.4%] and 
female = 124 [51.6%]); the mean age ± SD at enrollment 
was 57 ± 6 years. Visual scoring by radiologists indicated 

40 (17%) individuals with emphysema in the subcohort. The 
quantitative CT measurement of emphysema (%LAA −950) 
in the ImaLife subcohort showed a median of 4% with an 
interquartile range of 1.8 to 7.8%. Out of 240 individuals, 
136 (56.6%) had %LAA ≤ 5%, and 104 (43.4%) had %LAA 
> 5%.

The NLST subcohort contained 125 (male = 79 [63.2%] 
and female = 46 [36.8%]) patients with mean age ± SD 
of 64 ± 5 years at enrollment. The emphysema annotation 
of the NLST subcohort indicated that 33% individuals had 
emphysema. The quantitative CT measurement subcohort 
had median of 15.1% (interquartile range, 5.3 to 28.3%) of 
emphysema. Out of 125 patients, 25 (20%) had %LAA ≤ 5% 
and 100 (80%) had %LAA > 5%.

The population characteristics of the subcohorts are 
shown in Table 2.

Model Evaluation

Internal Validation

The minIP-based DL model automatically detected emphy-
sema in the ImaLife subcohort with a sensitivity of 88% in 
a class-balanced setting. The internal validation results are 
shown in Fig. 3a and Table 3. For the slab thicknesses from 
1 to 11 mm, there was a positive effect on the DL pipeline 
performance, that is, increasing the slab thickness resulted 
in an increase in area under receiver operating characteris-
tics curve (AUC). The classifier’s false-negative predictions 
decreased by 50% (from 10 to 5) when the slab thickness 
was increased (1 to 11 mm). Of all the minIP slab thick-
nesses that were tested, the DL pipeline showed the highest 

Table 2  Population characteristics of ImaLife and NLST subcohorts

Parameters ImaLife (n = 240) NLST (n = 125)

Age 56.6 ± 6.2 64.5 ± 5.4
Sex
  Male 116 (48.3%) 79 (63.2%)

    Female 124 (51.7%) 46 (36.8%)
Visual emphysema scoring
    Non-emphysema 200 (83%) 83 (66.4%)
    Emphysema 40 (17%) 42 (33.6%)
        Trace 8 (20.0%) -
        Mild 16 (40%) -
        Moderate 11 (27.5%) -
        Confluent 4 (10%) -
        Advanced destruction 1 (2.5%) -
Quantitative CT analysis
    Non-emphysema (%LAA 

≤ 5%)
136 (56.6%) 25 (20.0%)

    Emphysema (%LAA > 5%) 104 (43.4%) 100 (80.0%)
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performance for 9 and 11 mm, both in terms of AUC (0.90 
± 0.05 and 0.88 ± 0.05) and false negatives (5/40 and 6/40). 
There was a small but statistically significant difference of 
2% in AUC between 9 and 11 mm (p-value = 0.0348).

In Fig. 4, examples of non-emphysema and emphysema 
scans before and after applying minIP are shown. It can be 
seen that apart from helping to visualize low-density regions, 
or emphysema regions, applying minIP also reduces the com-
plexity of the image by suppressing the high-contrast regions. 
Our DL algorithm was run without any minIP, which clearly 
demonstrated that adding greater than 1 mm minIP slab thick-
ness to 1 mm slice thickness LDCT scans can improve the 
algorithm’s performance. This is shown using the class sepa-
ration plots obtained from the DL algorithm for emphysema 
and non-emphysema scans in Fig. B of Online Resource 1 
(electronic supplementary material), where an increase in 
separation between the classes is observed as the minIP slab 
thickness increases.

External Validation

In the NLST subcohort out of 33% emphysema scans, 79% 
were detected by the DL pipeline. In a class-imbalanced 
setting, the 11 mm slab thickness was found to be most sen-
sitive, with a performance of AUC = 0.77 ± 0.06 (Fig. 3b) 
and nine false negatives being the least among all the minIP 
slabs (Table 4). The model’s F1 scores were highest for 11 
mm (0.70) and 9 mm (0.67) slab thickness, indicating an 
acceptable performance in a real-world setting.

Quantitative CT‑Based Evaluation

In the ImaLife subcohort, there was fair agreement on 
emphysema and non-emphysema scans between our center’s 
radiologists and quantitative CT analysis (63% concordance, 
kappa 0.241). In the NLST subcohort, a slight agreement 
between procured annotation and quantitative CT analysis 

Fig. 3  The area under the curve obtained for the proposed DL model with different minIP slab thicknesses. a. ImaLife subcohort, b. NLST subco-
hort. Note that 11 mm slab thickness yielded the highest AUC 

Table 3  Performance metrics 
of the DL model for different 
minIP slab-thicknesses on the 
ImaLife subcohort

minIP minimum intensity projection, AUC  area under the curve

Setting AUC Sensitivity Specificity False-negative False-positive F1 score

minIP 11 0.90 ± 0.05 0.88 ± 0.05 0.83 ± 0.06 5/40 7/40 0.85
minIP 9 0.88 ± 0.05 0.85 ± 0.04 0.85 ± 0.07 6/40 6/40 0.85
minIP 7 0.85 ± 0.06 0.83 ± 0.05 0.85 ± 0.06 7/40 6/40 0.84
minIP 5 0.80 ± 0.05 0.83 ± 0.03 0.80 ± 0.05 7/40 8/40 0.81
minIP 3 0.76 ± 0.05 0.77 ± 0.07 0.83 ± 0.04 9/40 7/40 0.79
minIP 1 0.70 ± 0.07 0.75 ± 0.05 0.87 ± 0.08 10/40 5/40 0.80
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with 40% concordance (kappa 0.104) was observed. This 
indicated that the label noise in the NLST subcohort was 
higher than that of the ImaLife subcohort.

Our optimal minIP model (minIP slab thickness 11 mm), 
when tested on %LAA-based categorization, yielded an 
AUC of 0.79 ± 0.02 in the ImaLife subcohort and an AUC 
of 0.70 ± 0.04 in the NLST subcohort.

Detection Maps

The quality check of the detection maps from the DL 
model by the radiologists revealed that the prediction 
regions in detection maps were accurate in highlight-
ing emphysema regions in 97% (34 out of 35) and 91% 
(30 out of 33) of the predicted cases in internal and 

Fig. 4  Application of various minimum intensity projection slab 
thicknesses on thin-section CT obtained at the same anatomic level 
and magnified views of the lung (window width, 500 HU; window 
level, -850 HU). a. Thin-section CT scan (1 mm-collimation) and b, 
c and d minimum intensity projection images with 3 mm, 7 mm, and 
11 mm collimation. The first row represents a 52-year-old partici-

pant with non-emphysema diagnosis and the bottom row represents 
an emphysema participant of age 60 years. Note progressive suppres-
sion of vascular structures from 3 to 7 mm slab thickness, and better 
visualization low attenuation areas (white arrow) (For interpretation 
of the reference to color in the figure legend, the reader is referred to 
the web version of the article)

Table 4  Performance of the 
DL model for different minIP 
slab-thicknesses on the NLST 
subcohort

minIP minimum intensity projection, AUC  area under the curve

Setting AUC Sensitivity Specificity False-negative False-positive F1 score

minIP 11 0.77 ± 0.06 0.79 ± 0.05 0.77 ± 0.06 9/42 19/83 0.70
minIP 9 0.74 ± 0.06 0.76 ± 0.04 0.74 ± 0.07 10/42 21/83 0.67
minIP 7 0.67 ± 0.08 0.67 ± 0.05 0.73 ± 0.06 14/42 22/83 0.62
minIP 5 0.74 ± 0.05 0.71 ± 0.03 0.75 ± 0.05 12/42 21/83 0.65
minIP 3 0.73 ± 0.03 0.74 ± 0.07 0.72 ± 0.04 11/42 23/83 0.65
minIP 1 0.71 ± 0.03 0.69 ± 0.05 0.74 ± 0.08 13/42 21/83 0.63
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external-validation datasets, respectively. An example of 
a detection map is illustrated in Fig. 5.

Discussion

This novel study aimed to evaluate the feasibility of a minIP-
based DL algorithm for automatic emphysema detection in 
LDCT. Our results show that the proposed DL model trained 
on LDCT accurately detects the presence of emphysema 
with a sensitivity of 88% and aids emphysema detection in 
lung cancer screening. The multi-scale assessment of the 
DL model revealed that 11 mm minIP slab thickness was 
optimal in both general population (90%) and lung cancer 
screening (77%) datasets. The application of minIP enabled 
the unsupervised DL model to learn faster (in fewer epochs) 
by reducing the complexity of the image (suppressing the 
vessels and high-intensity phenotypes) and enabling the 
DL model to focus on disease-specific features. MinIP also 
helped collapse 3D information into a more efficient 2D rep-
resentation, thereby reducing the computational burden. In 
our study, the performance of thicker minIP slabs (7 to 11 
mm) was better than that of thinner slabs (1 to 3 mm). This 
is similar to those used in the routine clinical evaluation. 
Lan et al. also found thick slab minIPs (5 to 10 mm) to be 
more effective, with negligible differences between these 
minIP slabs [22].

The external validation of the DL model on the class-
imbalanced NLST subcohort achieved a sensitivity of 
79%, and there was a drop in overall model performance 
compared to the internal validation. This might be for two 

reasons. The first is the label noise: in the NLST dataset, the 
presence of emphysema on imaging is only recorded as yes 
or no and does not indicate any additional information on 
the evaluation method or protocol used, making meaningful 
interpretation difficult. The second reason is that the model 
is sensitive to reconstruction parameters (especially slice 
thickness and slice increment) and the NLST dataset con-
tained varying reconstruction parameters, which could have 
influenced the model’s performance. Although the variation 
in slice thickness in the external validation dataset could 
have been compensated for, the scope of the study was to 
test the model’s constraints and check its creditability in a 
real-world setting. Examples of false negative cases that the 
model failed to classify are shown in Fig. 6.

In the clinical setting, lung densitometry (%LAA) is 
predominantly used to assess emphysema in CT. However, 
visual emphysema scoring is less sensitive to image noise 
and can more precisely discriminate between the pres-
ence or absence of emphysema [39] and so, our model was 
developed on visual scoring instead of CT densitometry 
based scoring. Concurrently, we found the kappa agree-
ment between visual scoring and CT densitometry to be fair 
and slight for ImaLife and NLST subcohorts, respectively. 
A similar level of agreement was observed between visual 
assessment and quantitative CT in the COPDGene study for 
emphysema detection [39].

Tang et al. developed a transfer learning DL pipeline to 
classify COPD patients in lung cancer screening LDCTs. 
Although the authors do not address emphysema specifi-
cally, the reported AUC of the model on percentage low 
attenuation areas (%LAA) was 74% [11]. Therefore, we 

Fig. 5  Explainability of the deep learning model. Randomly selected 
abnormal images (axial-emphysema scans) which were correctly 
classified by the model are illustrated here. The first column shows 
the example images with radiologist annotation using red bounding 
box. The bounding box’s in these images were only used to illustrate 
the emphysema regions. The following column represents the corre-
sponding minIP images of slab thickness 11. Third and fourth column 

illustrates the lobe segmentation masks (color-coded as white for left 
lobe and grey for right lobe) followed by detection maps from the DL 
model, respectively. The green regions in the detection maps repre-
sent the detected emphysema regions. The detection maps indicated 
the presence of emphysema inside the bounding box provided by 
radiologists (For interpretation of the reference to color in the figure 
legend, the reader is referred to the web version of the article)
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tested our DL model on %LAA-based categorization and 
found comparable results.

Furthermore, Humphries et al. performed automatic clas-
sification of emphysema using a CNN-LSTM network with 
79% accuracy on COPDGene datasets [15], and Hatt et al. 
used a dataset from a similar cohort using a 3D-Resnet-CNN 
model and achieved an accuracy of 79.8% [16]. Although 
these studies have shown that it is possible to use DL models 
for emphysema, they vary in terms of model architecture 
(supervised) and inclusion protocol of participants (based 
on CT dose, GOLD criteria, or scoring), and so directly 
comparing them with our model is not possible. Moreover, 
none of the studies addresses the data imbalance that exists 
in the real-world scenario, while our model with adversarial 
training is well-suited to class-imbalanced tasks. Previously 
Nagaraj et al. compared the same adversarial network with 
RESNET in class-imbalance settings and adversarial model 
outperformed the pre-trained model showing the potential 
of adversarial network [33].

In this study, detection maps for anomalies were 
compared to the visual identification of emphysema by 
radiologists, and clinically acceptable performance was 
observed. Although the pixel-wise emphysema localiza-
tion via detection maps can be used to verify the model’s 
predictions, the detection maps are only 2D axial sections, 

and they cannot be considered for 3D emphysema quanti-
fication. However, they may be used as an annotation tool 
for emphysema.

For our future work, we intend to combine objective 
measurements such as pre- and post-bronchodilator spirom-
etry combined with visual scoring to validate the classifi-
er’s performance. By utilizing our model, the radiologists’ 
confidence in identifying emphysema can be increased by 
providing a comparison methodology like our model that is 
capable of classifying the overall scans into emphysema and 
non-emphysema categories and pinpointing the emphysema 
regions in the scans. Additionally, there is no threshold to 
toggle as in the HU-based method, which is usually subject 
to bias.

The main limitation of our model is that it does not clas-
sify emphysema based on severity levels. Our immediate 
future work will focus on training the minIP model with a 
multi-protocol diverse dataset. Additionally, the experiments 
will be designed to evaluate the effects of combining mul-
tiple minIPs to determine whether this can compensate for 
protocol variations and validate the model on a large scale 
lung cancer screening dataset. Combining this DL model 
with automatic nodule exclusion may aid comprehensive 
lung disease and mortality evaluation in LDCT lung cancer 
screening.

Fig. 6  Examples of false nega-
tive scans. First row represents 
multi-planar reconstruction 
(MPR) visualization and second 
row represents minimum 
intensity projection of the 
corresponding MPR images. 
a. 56 years male with smoking 
history of 45 pack years. b. 65 
years female with smoking his-
tory of 40 pack years. The white 
arrows indicate the Fleisch-
ner criteria defined traces of 
emphysema in the lung that was 
missed by the DL model
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Conclusions

We developed an automatic minIP-based DL model for 
the classification and detection of emphysema in LDCT. 
Using minIP as a disease-specific augmentation technique, 
the unsupervised DL algorithm becomes a robust model to 
address the annotation-less and class-imbalanced scenarios 
that normally characterize lung cancer screening LDCTs. 
The DL model is sensitive to scan slice thickness and needs 
to be validated on multi-cohort datasets. When deployed in 
screening setup, our model can assist large-scale emphysema 
classification and provide the detection maps that can act as 
priori to increase the confidence in the decision.
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