1,070 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    S4: Self-Supervised Sensing Across the Spectrum

    Full text link
    Satellite image time series (SITS) segmentation is crucial for many applications like environmental monitoring, land cover mapping and agricultural crop type classification. However, training models for SITS segmentation remains a challenging task due to the lack of abundant training data, which requires fine grained annotation. We propose S4 a new self-supervised pre-training approach that significantly reduces the requirement for labeled training data by utilizing two new insights: (a) Satellites capture images in different parts of the spectrum such as radio frequencies, and visible frequencies. (b) Satellite imagery is geo-registered allowing for fine-grained spatial alignment. We use these insights to formulate pre-training tasks in S4. We also curate m2s2-SITS, a large-scale dataset of unlabeled, spatially-aligned, multi-modal and geographic specific SITS that serves as representative pre-training data for S4. Finally, we evaluate S4 on multiple SITS segmentation datasets and demonstrate its efficacy against competing baselines while using limited labeled data

    Disaster Analysis using Satellite Image Data with Knowledge Transfer and Semi-Supervised Learning Techniques

    Get PDF
    With the increase in frequency of disasters and crisis situations like floods, earthquake and hurricanes, the requirement to handle the situation efficiently through disaster response and humanitarian relief has increased. Disasters are mostly unpredictable in nature with respect to their impact on people and property. Moreover, the dynamic and varied nature of disasters makes it difficult to predict their impact accurately for advanced preparation of responses [104]. It is also notable that the economical loss due to natural disasters has increased in recent years, and it, along with the pure humanitarian need, is one of the reasons to research innovative approaches to the mitigation and management of disaster operations efficiently [1]

    Self-Supervised Learning for Invariant Representations From Multi-Spectral and SAR Images

    Get PDF
    Self-Supervised learning (SSL) has become the new state of the art in several domain classification and segmentation tasks. One popular category of SSL are distillation networks such as Bootstrap Your Own Latent (BYOL). This work proposes RS-BYOL, which builds on BYOL in the remote sensing (RS) domain where data are non-trivially different from natural RGB images. Since multi-spectral (MS) and synthetic aperture radar (SAR) sensors provide varied spectral and spatial resolution information, we utilise them as an implicit augmentation to learn invariant feature embeddings. In order to learn RS based invariant features with SSL, we trained RS-BYOL in two ways, i.e. single channel feature learning and three channel feature learning. This work explores the usefulness of single channel feature learning from random 10 MS bands of 10m-20 m resolution and VV-VH of SAR bands compared to the common notion of using three or more bands. In our linear probing evaluation, these single channel features reached a 0.92 F1 score on the EuroSAT classification task and 59.6 mIoU on the IEEE Data Fusion Contest (DFC) segmentation task for certain single bands. We also compare our results with ImageNet weights and show that the RS based SSL model outperforms the supervised ImageNet based model. We further explore the usefulness of multi-modal data compared to single modality data, and it is shown that utilising MS and SAR data allows better invariant representations to be learnt than utilising only MS data

    MULTI-MODAL SELF-SUPERVISED REPRESENTATION LEARNING FOR EARTH OBSERVATION

    Get PDF
    Self-Supervised learning (SSL) has reduced the performance gap between supervised and unsupervised learning, due to its ability to learn invariant representations. This is a boon to the domains like Earth Observation (EO), where labelled data availability is scarce but unlabelled data is freely available. While Transfer Learning from generic RGB pre-trained models is still common-place in EO, we argue that, it is essential to have good EO domain specific pre-trained model in order to use with downstream tasks with limited labelled data. Hence, we explored the applicability of SSL with multi-modal satellite imagery for downstream tasks. For this we utilised the state-of-art SSL architectures i.e. BYOL and SimSiam to train on EO data. Also to obtain better invariant representations, we considered multi-spectral (MS) images and synthetic aperture radar (SAR) images as separate augmented views of an image to maximise their similarity. Our work shows that by learning single channel representations through non-contrastive learning, our approach can outperform ImageNet pre-trained models significantly on a scene classification task. We further explored the usefulness of a momentum encoder by comparing the two architectures i.e. BYOL and SimSiam but did not identify a significant improvement in performance between the models

    Cross-sensor self-supervised training and alignment for remote sensing

    Full text link
    Large-scale "foundation models" have gained traction as a way to leverage the vast amounts of unlabeled remote sensing data collected every day. However, due to the multiplicity of Earth Observation satellites, these models should learn "sensor agnostic" representations, that generalize across sensor characteristics with minimal fine-tuning. This is complicated by data availability, as low-resolution imagery, such as Sentinel-2 and Landsat-8 data, are available in large amounts, while very high-resolution aerial or satellite data is less common. To tackle these challenges, we introduce cross-sensor self-supervised training and alignment for remote sensing (X-STARS). We design a self-supervised training loss, the Multi-Sensor Alignment Dense loss (MSAD), to align representations across sensors, even with vastly different resolutions. Our X-STARS can be applied to train models from scratch, or to adapt large models pretrained on e.g low-resolution EO data to new high-resolution sensors, in a continual pretraining framework. We collect and release MSC-France, a new multi-sensor dataset, on which we train our X-STARS models, then evaluated on seven downstream classification and segmentation tasks. We demonstrate that X-STARS outperforms the state-of-the-art by a significant margin with less data across various conditions of data availability and resolutions

    Mind the Modality Gap: Towards a Remote Sensing Vision-Language Model via Cross-modal Alignment

    Full text link
    Deep Learning (DL) is undergoing a paradigm shift with the emergence of foundation models, aptly named by their crucial, yet incomplete nature. In this work, we focus on Contrastive Language-Image Pre-training (CLIP), an open-vocabulary foundation model, which achieves high accuracy across many image classification tasks and is often competitive with a fully supervised baseline without being explicitly trained. Nevertheless, there are still domains where zero-shot CLIP performance is far from optimal, such as Remote Sensing (RS) and medical imagery. These domains do not only exhibit fundamentally different distributions compared to natural images, but also commonly rely on complementary modalities, beyond RGB, to derive meaningful insights. To this end, we propose a methodology for the purpose of aligning distinct RS imagery modalities with the visual and textual modalities of CLIP. Our two-stage procedure, comprises of robust fine-tuning CLIP in order to deal with the distribution shift, accompanied by the cross-modal alignment of a RS modality encoder, in an effort to extend the zero-shot capabilities of CLIP. We ultimately demonstrate our method on the tasks of RS imagery classification and cross-modal retrieval. We empirically show that both robust fine-tuning and cross-modal alignment translate to significant performance gains, across several RS benchmark datasets. Notably, these enhancements are achieved without the reliance on textual descriptions, without introducing any task-specific parameters, without training from scratch and without catastrophic forgetting

    Semi-supervised learning for joint SAR and multispectral land cover classification

    Get PDF
    Semi-supervised learning techniques are gaining popularity due to their capability of building models that are effective, even when scarce amounts of labeled data are available. In this paper, we present a framework and specific tasks for self-supervised pretraining of \textit{multichannel} models, such as the fusion of multispectral and synthetic aperture radar images. We show that the proposed self-supervised approach is highly effective at learning features that correlate with the labels for land cover classification. This is enabled by an explicit design of pretraining tasks which promotes bridging the gaps between sensing modalities and exploiting the spectral characteristics of the input. In a semi-supervised setting, when limited labels are available, using the proposed self-supervised pretraining, followed by supervised finetuning for land cover classification with SAR and multispectral data, outperforms conventional approaches such as purely supervised learning, initialization from training on ImageNet and other recent self-supervised approaches.Comment: IEEE Geoscience and Remote Sensing Letter

    BirdSAT: Cross-View Contrastive Masked Autoencoders for Bird Species Classification and Mapping

    Full text link
    We propose a metadata-aware self-supervised learning~(SSL)~framework useful for fine-grained classification and ecological mapping of bird species around the world. Our framework unifies two SSL strategies: Contrastive Learning~(CL) and Masked Image Modeling~(MIM), while also enriching the embedding space with metadata available with ground-level imagery of birds. We separately train uni-modal and cross-modal ViT on a novel cross-view global bird species dataset containing ground-level imagery, metadata (location, time), and corresponding satellite imagery. We demonstrate that our models learn fine-grained and geographically conditioned features of birds, by evaluating on two downstream tasks: fine-grained visual classification~(FGVC) and cross-modal retrieval. Pre-trained models learned using our framework achieve SotA performance on FGVC of iNAT-2021 birds and in transfer learning settings for CUB-200-2011 and NABirds datasets. Moreover, the impressive cross-modal retrieval performance of our model enables the creation of species distribution maps across any geographic region. The dataset and source code will be released at https://github.com/mvrl/BirdSAT}.Comment: Accepted at WACV 202
    corecore