291,171 research outputs found
Contraction of cross-linked actomyosin bundles
Cross-linked actomyosin bundles retract when severed in vivo by laser
ablation, or when isolated from the cell and micromanipulated in vitro in the
presence of ATP. We identify the time scale for contraction as a viscoelastic
time tau, where the viscosity is due to (internal) protein friction. We obtain
an estimate of the order of magnitude of the contraction time tau ~ 10-100 s,
consistent with available experimental data for circumferential microfilament
bundles and stress fibers. Our results are supported by an exactly solvable,
hydrodynamic model of a retracting bundle as a cylinder of isotropic, active
matter, from which the order of magnitude of the active stress is estimated.Comment: To be published in Physical Biolog
Positive and negative stress in business cycle behaviour
The economic theory shows as business cycles have longer periods of expansions than contractions. The purpose of this paper is to analyze their behaviour in order to present a metrics that assesses the negative and positive stress of the economic system. In addition, this analysis presents some forecasting implications supporting modern political economy of growth.Business Cycles, Contraction-compression Economic stress, Economic Forecasting
Fiber networks amplify active stress
Large-scale force generation is essential for biological functions such as
cell motility, embryonic development, and muscle contraction. In these
processes, forces generated at the molecular level by motor proteins are
transmitted by disordered fiber networks, resulting in large-scale active
stresses. While these fiber networks are well characterized macroscopically,
this stress generation by microscopic active units is not well understood. Here
we theoretically study force transmission in these networks, and find that
local active forces are rectified towards isotropic contraction and strongly
amplified as fibers collectively buckle in the vicinity of the active units.
This stress amplification is reinforced by the networks' disordered nature, but
saturates for high densities of active units. Our predictions are
quantitatively consistent with experiments on reconstituted tissues and
actomyosin networks, and shed light on the role of the network microstructure
in shaping active stresses in cells and tissue.Comment: 8 pages, 4 figures. Supporting information: 5 pages, 5 figure
Experimental and numerical studies of the flow structure generated by a submerged sluice gate
Sluice gates are commonly used to control discharge and levels, and to monitor discharge. However discharge formulas perform poorly at large opening and large submergence. This study explores the flow structure under such gates in order to verify commonly used assumptions about contraction coefficient and energy losses. The study is based on experimental results acquired in a laboratory flume. The flow structure was determined experimentally by ADV and numerically with RANS simulations performed with Fluent TM for different configurations of submerged gates and different modelling assumptions. Attention is given to the contracted flow and to the recirculating zone upstream of the gate. The experimental results on velocity are consistent with RANS simulations as far as discharge coefficients, wall shear stress and flow structure are concerned. Contraction coefficients were compared with analytical calculations based on potential flow and momentum balance. It is verified that, as usually assumed, the viscosity effects have a limited influence on the flow structure. We show that contraction coefficients should not be considered as constant at large submergence and large opening, which is a reason of the poor performance of the discharge formulas in these regimes
Effect of light-curing units and activation mode on polymerization shrinkage and shrinkage stress of composite resins
The aim of this study was to evaluate the polymerization shrinkage and shrinkage stress of composites polymerized with a LED and a quartz tungsten halogen (QTH) light sources. The LED was used in a conventional mode (CM) and the QTH was used in both conventional and pulse-delay modes (PD). The composite resins used were Z100, A110, SureFil and Bisfil 2B (chemical-cured). Composite deformation upon polymerization was measured by the strain gauge method. The shrinkage stress was measured by photoelastic analysis. The polymerization shrinkage data were analyzed statistically using two-way ANOVA and Tukey test (p<0.05), and the stress data were analyzed by one-way ANOVA and Tukey's test (p<0.05). Shrinkage and stress means of Bisfil 2B were statistically significant lower than those of Z100, A110 and SureFil. In general, the PD mode reduced the contraction and the stress values when compared to CM. LED generated the same stress as QTH in conventional mode. Regardless of the activation mode, SureFil produced lower contraction and stress values than the other light-cured resins. Conversely, Z100 and A110 produced the greatest contraction and stress values. As expected, the chemically cured resin generated lower shrinkage and stress than the light-cured resins. In conclusion, The PD mode effectively decreased contraction stress for Z100 and A110. Development of stress in light-cured resins depended on the shrinkage value
On the Energy-Momentum Density of Gravitational Plane Waves
By embedding Einstein's original formulation of GR into a broader context we
show that a dynamic covariant description of gravitational stress-energy
emerges naturally from a variational principle. A tensor is constructed
from a contraction of the Bel tensor with a symmetric covariant second degree
tensor field and has a form analogous to the stress-energy tensor of the
Maxwell field in an arbitrary space-time. For plane-fronted gravitational waves
helicity-2 polarised (graviton) states can be identified carrying non-zero
energy and momentum.Comment: 10 pages, no figure
Cell contraction induces long-ranged stress stiffening in the extracellular matrix
Animal cells in tissues are supported by biopolymer matrices, which typically
exhibit highly nonlinear mechanical properties. While the linear elasticity of
the matrix can significantly impact cell mechanics and functionality, it
remains largely unknown how cells, in turn, affect the nonlinear mechanics of
their surrounding matrix. Here we show that living contractile cells are able
to generate a massive stiffness gradient in three distinct 3D extracellular
matrix model systems: collagen, fibrin, and Matrigel. We decipher this
remarkable behavior by introducing Nonlinear Stress Inference Microscopy
(NSIM), a novel technique to infer stress fields in a 3D matrix from nonlinear
microrheology measurement with optical tweezers. Using NSIM and simulations, we
reveal a long-ranged propagation of cell-generated stresses resulting from
local filament buckling. This slow decay of stress gives rise to the large
spatial extent of the observed cell-induced matrix stiffness gradient, which
could form a mechanism for mechanical communication between cells
- …
