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ABSTRACT : Sluice gates are commonly used to control discharge and levels, and to monitor discharge. 
However discharge formulas perform poorly at large opening and large submergence. This study explores the 
flow structure under such gates in order to verify commonly used assumptions about contraction coefficient and 
energy losses. The study is based on experimental results acquired in a laboratory flume. The flow structure was 
determined experimentally by ADV and numerically with RANS simulations performed with Fluent for 
different configurations of submerged gates and different modelling assumptions. Attention is given to the 
contracted flow and to the recirculating zone upstream of the gate. The experimental results on velocity are 
consistent with RANS simulations as far as discharge coefficients, wall shear stress and flow structure are 
concerned. Contraction coefficients were compared with analytical calculations based on potential flow and 
momentum balance.  It is verified that, as usually assumed, the viscosity effects have a limited influence on the 
flow structure. We show that contraction coefficients should not be considered as constant at large submergence 
and large opening, which is a reason of the poor performance of the discharge formulas in these regimes.  

INTRODUCTION  

Sluice gates are commonly used in artificial and natural open-channels.  Different engineering applications 
require paying more attention to these structures. Indeed, they are frequently used to measure the discharge, as 
they are insensitive to channel roughness evolution, unlike rating curves or velocity probes that may deviate due 
to vegetation developments. At large opening and large submergence, large errors can be observed due to bad 
estimates of the contraction coefficient, which is assumed to be the same as in free flow. Other common issues 
are linked to the flow structure upstream of gates, such as the capture of floating elements (especially 
vegetation).  
 
Most previous studies have focused on gates in free flow. Roth & Hager (1999) published a detailed 
experimental study of the flow structure, and analyzed the real fluid effect. For submerged flow, most studies are 
limited to small openings (e.g. Dey & Sarkar 2006, 2007). Using energy and momentum balance and potential 
flow assumptions, Belaud et al. (2009) determined the contraction coefficient Cc of submerged gates, and then 
their discharge coefficient. They showed that large opening and large submergence may lead to much higher 
values of Cc than the typical value of 0.61 obtained in free flow at small opening. However, real fluid effects 
must be analyzed, as they may modify the velocity distribution, and introduce energy dissipation and flow 
resistance. In this paper, the flow structure is analyzed by experimental and numerical methods. The objective is 
to characterize the shear stress and velocity fields upstream and under sluice gates in submerged conditions, 
taking account of real fluid effects such as viscosity. Analytical formulations to calculate both fields are 
proposed. An application to discharge coefficient is finally given. 

EXPERIMENTAL SETUP 

The experiments have been carried out with the flume of the hydraulic lab of Montpellier Supagro. Its width, 
depth and length are 30cm, 50cm and 8m respectively. It has glass wall and a steel bottom. The sluice gate is 
positioned 4 m from the upstream end. The flow discharge is adjusted by a gate set on the inlet pipe. Discharge is 
measured with a V-notch weir placed at the canal tail and removed before experiments. The downstream 
tailwater depth is fixed by a shutter at the tail of the flume. The Plexiglas gate is 5 mm wide with a rectangular 
shape. Water levels are measured with a point gage of ± 0.5 mm reading accuracy.  
 
Velocities are measured with the Vectrino acoustic doppler velocimeter from Nortek, with an output sampling 
frequency of 25 Hz. The sample volume and transmit length are chosen to ensure recommended measurement 
conditions, namely SNR greater than 20 and correlation greater than 80%. For some measurements in the 
recirculation zone downstream from the gate (submerged flow) the correlation was only greater than 50% due to 
high turbulent flow.These conditions are obtained for a sample volume of 1.9 mm high and a transmission length 
of 1.2 mm. Sensor is maintained vertically with a 1 cm diameter rod. This set-up ensures an accuracy of ±0.5 
mm in the vertical direction and ±2 mm in the longitudinal direction. At each point, the measurement is recorded 
during 40 s. Turbulence properties are computed by analyzing and averaging instantaneous data.  



 

Figure 1 : domain and boundary conditions for submerged flow 2D RANS simulation 

 
Experiments have been performed in submerged flow with a total head H0=0.3m, gate openings W between 0.03 
and 0.24cm and downstream level h2 between 0.20 and 0.27cm. Relative gate opening is defined by a=W/H0; 
submergence is defined by s=h2/H0. Distance from the gate is denoted x, and relative distance X=x/W. 
Measurements include water levels, velocity profiles and ridge position.  

NUMERICAL APPROACH 

Modelling equation 

The Reynolds Average Navier Stockes equations are solved with Fluent 6.3. in unsteady condition. Seventy 
seconds of simulation time give a constant solution where mass balance is checked, which had been difficult to 
obtain with steady calculation.  The SIMPLE algorithm is used to obtain pressure fields. The pressure 
discretization uses the PRESTO scheme, and other equations are discretized with a second-order scheme. Three 
turbulent models were used for 2 specific flow, with parameters given by Fluent default values.  The RNG k-e 
model was used too in one case. To track the free surface, the partial volume of fluid model was used. It is based 
on VOF formulation (Hirt & Nichols 1981) but it differs from it because air flow is taken into account 
(Bombardelli et al. 2001). Two phases (water and air) are considered in the entire domain but a single set of 
momentum equations is shared by air and water. The nature of fluid is taken into account thanks to the volume 
fraction of each phase in each cell of the domain. The RANS and continuity equations are solved with volume 
fraction average value for properties (density and kinematic viscosity).  The accurate free surface position is 
interpolated with the geometric reconstruction scheme available for unsteady calculation only. This scheme 
enables to calculate the free surface in a cell using its position in the neighbor cells.  

Mesh 

The 2D structured mesh was produced by Gambit. The domain dimensions are 6*0.4 m. The gate was located 
3 m downstream from the inlet boundary. It is taken as the origin of the horizontal abscissas. Eight different 
meshes were created for each relative opening (a=0.1 to 0.8). The meshes were refined near the wall boundaries 
(bottom and sluice gate) and in the free surface area. The wall functions defined by Launder & Spalding (1972) 
were used. The mesh was constructed in order to verify that the non-dimensional distance to the wall is in the 

range of 12 < y+ < 250, with υ*.uyy =+ . 

Boundary conditions 

The boundary conditions and initial values are indicated on Fig 1. Water and air are injected separately with two 
velocity conditions at the upstream end. The air velocity is insensitive and equal to zero. An exponential profile 
is assumed for the water velocity distribution: 
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in which γ is a shape factor, y is the vertical position and h0 is channel depth. Equation 1 insures that the mean 
velocity is equal to U0 at the inlet. Based on standard values observed in open channels, we used γ=0.1. The first 
calculation were performed with a discharge (and mean velocity) determined by Garbrecht (1977)’s discharge 
equation in order to refine the mesh at the free surface. At the downstream end, a hydrostatic pressure outlet 
condition is imposed thanks to the open channel option. For submerged simulation, the water height (h2) is also 
fixed. The bed and the gate are considered smooth and the top is a pressure outlet condition. The initial and 
boundary turbulence intensity is estimated to 3 %.  



RESULT AND DISCUSSIONS  

Velocity profile 

Velocity profiles are described for small opening (a=0.2) and s=0.8, then a large opening (a=0.7) and s=0.9. At 
small opening (Fig. 2), the velocity is well reproduced with RSM and RNG k-ε models. The standard k-ω model, 
which is usually adapted to jet flow, gives the worst result with this contracted jet. Knowledge of the velocity 
profile allows plotting the contraction stream (Fig. 3) defined as that which carries a forward flow equivalent to 
the flow entering the gate (Rajaratnam & Subramanya 1967). The maximum contracted section is similar with 
RNG and RSM simulations. 
  

  

Figure 2 : Velocities for submerged flow 
with a=0.2 and s=0.8. (X=-5, -2, 2, 5, 10). 

Figure 3 : Velocities for submerged flow with a=0.7 and 
s=0.9. (X=-1, -0.5, 1, 2, 3).  

At large opening, all RANS simulations agree with experiments except in the jet between the gate and the 
contracted section. Results with RNG k-ε and RSM models are very similar, while k-ω gives results that largely 
deviate from experiments. Upstream of the gate, longitudinal velocity is slightly underestimated, due to the 
presence of the recirculating zone that is not simulated with the 2D simulations. Simulations show a slight 
increase of velocity in the mixing region close to the contracted section (between X=1 and X=2), which is 
observed on experiments at X=1 only. Error could come from turbulence model and from the non-uniformity of 
velocity in the transverse direction. Nevertheless, the contraction coefficicent deduced from experimental and 
numerical methods are very close as shown on Figure 3. For all submergence ratios and small opening, the flow 
can be analyzed as a water jet (Dey & Sarkar 2006, 2007) while at large opening, velocity profile under the gate 
is more heterogenous in the vena contracta. 

Energy correction 

The previous estimates of the velocity may be used in a one-dimensional view to calculate kinetic energy and 
momentum coefficients. Figure 4 shows the values of Coriolis α coefficient as a function of the longitudinal 
distance for a largely submerged gate (s=0.9) and different openings. The minimum of α corresponds to a mostly 
uniform longitudinal velocity profile (except in the boundary layer) and the limit of the significant gate 
influence, which is around 2 to 4 times the gate opening. In the downstream part, α is between 1.02 and 1.03 at 
the contracted section. Average values of the momentum coefficients are 1.02 (upstream) and 1.015 
(downstream of the gate). Head loss between upstream pool and contracted section is about 1% of the total head, 
mainly due to the high velocity gradients in the boundary layer.  

 

 

Figure 4 : energy correction factor for s=0.9.  



Bottom pressure and wall shear stress 

The normalized pressure head Hp=(h-hmin)/(h0-hmin) is calculated, as suggested by Roth & Hager (1999) for free 
flow. It can be supposed that hmin corresponds to the value at the contracted section because the maximum 
velocity is reached at this section. Then, it can be noticed that before the gate up to X=1(x=W), the pressure head 
is well described  by Eq. 2 whatever the opening and the submergence is: 

( )( )24.1.48.0exp1 −−−= XH p     Eq. 2 

The value of 1.4 corresponds to the average position of the contracted section (velocity is maximum). However, 
the position X of this section increases when opening decreases or submergence increases.  
 
Bed shear stress can be calculated using Von Karman’s equation (Eq. 3) and the approximation of the classical 
wall-law (Eq. 4): 
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where n=7 is the exponent of the exponential velocity profile in the boundary layer, 
ν

00Re
hU

= is Reynolds 

number, 
2
0.

~
U

p
p ρ

τ
τ = , 

0

~

U

Ue
U e = , 

0

~
h
δδ =  with ρ water density, Ue  velocity at the boundary layer limit,  δ boundary 

layer thickness  and K is the constant provided by the approximation of the log-law (K=8.75). Using Bernoulli’s 
theorem between upstream pool and contracted section provides a third equation for 
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Hhh = . A very good approximation is given by Cc=0.61 and  1

~
0 =h . Alternatively, these values can 

be calculated by the method of Belaud et al. (2009) and used further in this paper. The first-order differential 

equation giving δ is solved with a boundary condition given by δ=h0/2 in the upstream pool, leading topτ~ . 

 

  

Figure 5 : Bottom pressure profile for all RANS 
simulation and for A-2 and B case from Rjaratnam 
(1967). 

Figure 6 : Normalized wall shear stress at the bed 

under the sluice gate ( ( ) 25.02 Re~ −= aXf τ ). 

 
For a=0.2 simulations well agree with experiments (Fig. 3) and the semi-empirical formula proposed by Dey & 
Sarkar (2006). However for a> 0.3, error is significant  because correlations were adjusted only for a jet 
configuration. The second maximum for bed shear stress is due to the end of the submerged hydraulic jump.  
The one dimensional calculation allows reproducing the wall shear stress under the gate even for large opening. 
The gap for a=0.8 comes from the fitting of Hp which did not take into account changes of minimum position 
pressure. 
 



Recirculating zone 

  
Figure 7 : recirculating zone upstream of the gate 
for a small opening. 

Figure 8 : position of ridges for present 
experiments (signs) and previous studies in free 
flow (lines). 

 
The upstream recirculating zone has a specific interest as it may capture vegetation and other floating materials. 
However our 2D simulations do not simulate recirculation. Then, it is assumed that this structure is due to 3D 
effects. For free flow, previous measurements have been done by Rajaratnam & Humphries (1982) and Roth & 
Hager (1999) who considered that position of ridges (Lr) at the surface define the recirculating zone (Fig. 8) and 
linked the length of this zone to a. Our laboratory experiments showed that, unlike in free flow, ridges appear 
much more upstream from the gate than the main recirculating zone.The ridges are linked to secondary 
recirculations that appear only at the surface, close to the borders. For a given depth and opening, they appear 
further from the gate as the submergence increases. Indeed, mean velocity decreases as Froude number decreases 
and secondary recirculations can become longer. We find also that a change in h0 causes a change of Lr, which 
was not considered in former studies. 

Contraction and discharge coefficients 

Several authors (Sepulveda et al. 2009; Belaud et al. 2009) have shown the benefit to determine discharge 
coefficient using energy equation and contraction coefficient. At large opening, choosing Cc=0.61 leads to 
under-estimate discharge coefficient. Using the momentum balance, the method of Belaud et al. (2009) leads to 
values of Cc that increase with gate opening in submerged flow, allowing improving the calculation of discharge 
coefficient compared to classical methods. Such variation is confirmed with RANS simulations. This method 
was applied using the water level at the section contracted h1. Momentum and energy equations may be adjusted 
to take account of energy and momentum corrections, using RANS simulations as described here. Figure 9 
shows the variation of Cc with a for three submergence ratios (s=0.7, 0.8, 0.9). Energy-momentum balance 
approach is improved using the correction coefficients given by RANS simulations, in particular at small 

  

Figure 9: contraction coefficient as a function of 
relative opening from RANS simulation (signs) 
and Belaud et al. (2009)’s formulation (lines). 

Figure 10 : comparison between discharge 
coefficients estimated by several methods and 
measured discharge coefficients. 



opening. It indicates the influence of viscous effects which increase the kinetic energy correction factor. At large 
opening, mean values of correction coefficients are sufficient to approach Cc.   
A comparison of experimental values and present numerical results with the momentum-energy approach and 
Garbrecht (1977)’s formula is given in Fig. 10. For almost all openings, an error lower than 10 % was obtained 
only with the momentum-energy method. Although this method gives the best result, the water level over the 
contracted section is more difficult to measure than the tailwater depth, but it may be calculated using 
momentum balance too.  

CONCLUSION 

The flow structure generated by a submerged sluice gate have been studied experimentally and with RANS 
simulations. RSM and RNG k-ε are able to reproduce measured velocity and shear stress profiles, and then 
characterize the contracted flow. However, 2D simulation is inappropriate to simulate 3D effects such as the 
recirculating zone, but allows estimating its position and length of this zone by analyzing velocity field. 
Simulations also give correction factors that can be applied to energy-momentum equations, which may be used 
to quickly calculate contraction and discharge coefficients, in particular at large opening and large submergence. 
Viscosity influence such as head losses and boundary layer thickness may be taken into account to improve the 
different terms of the balance, and then the estimation of the discharge coefficient. 
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