23,020 research outputs found

    Machine Learning Configuration Interaction

    Full text link
    We propose the concept of machine learning configuration interaction (MLCI) whereby an artificial neural network is trained on-the-fly to predict important new configurations in an iterative selected configuration interaction procedure. We demonstrate that the neural network can discriminate between important and unimportant configurations, that it has not been trained on, much better than by chance. MLCI is then used to find compact wavefunctions for carbon monoxide at both stretched and equilibrium geometries. We also consider the multireference problem of the water molecule with elongated bonds. Results are contrasted with those from other ways of selecting configurations: first-order perturbation, random selection and Monte Carlo configuration interaction. Compared with these other serial calculations, this prototype MLCI is competitive in its accuracy, converges in significantly fewer iterations than the stochastic approaches, and requires less time for the higher-accuracy computations.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in The Journal of Chemical Theory and Computation, copyright American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/articlesonrequest/AOR-dANIFXJKzRAyR99E6hb

    Configuration interaction in the helium continuum

    Get PDF
    Configuration interaction in helium continuum and autoionization level

    Configuration interaction in delta-doped heterostructures

    Get PDF
    We analyze the tunnel coupling between an impurity state located in a δ\delta-layer and the 2D delocalized states in the quantum well (QW) located at a few nanometers from the δ\delta -- layer. The problem is formulated in terms of Anderson-Fano model as configuration interaction between the carrier bound state at the impurity and the continuum of delocalized states in the QW. An effect of this interaction on the interband optical transitions in the QW is analyzed. The results are discussed regarding the series of experiments on the GaAs structures with a δ\delta-Mn layer.Comment: arXiv admin note: substantial text overlap with arXiv:1111.089

    Many-Body Expanded Full Configuration Interaction. I. Weakly Correlated Regime

    Full text link
    Over the course of the past few decades, the field of computational chemistry has managed to manifest itself as a key complement to more traditional lab-oriented chemistry. This is particularly true in the wake of the recent renaissance of full configuration interaction (FCI)-level methodologies, albeit only if these can prove themselves sufficiently robust and versatile to be routinely applied to a variety of chemical problems of interest. In the present series of works, performance and feature enhancements of one such avenue towards FCI-level results for medium to large one-electron basis sets, the recently introduced many-body expanded full configuration interaction (MBE-FCI) formalism [J. Phys. Chem. Lett., 8, 4633 (2017)], will be presented. Specifically, in this opening part of the series, the capabilities of the MBE-FCI method in producing near-exact ground state energies for weakly correlated molecules of any spin multiplicity will be demonstrated.Comment: 38 pages, 7 tables, 3 figures, 1 SI attached as an ancillary fil

    Configuration Interaction calculations of positron binding to Be(3Po)

    Full text link
    The Configuration Interaction method is applied to investigate the possibility of positron binding to the metastable beryllium (1s^22s2p 3Po) state. The largest calculation obtained an estimated energy that was unstable by 0.00014 Hartree with respect to the Ps + Be^+(2s) lowest dissociation channel. It is likely that positron binding to parent states with non-zero angular momentum is inhibited by centrifugal barriers.Comment: 12 pages, 2 figures, Elsevier tex format, In press Nucl.Instrum.Meth.Phys.Res.B positron issu

    Impact of Electron-Electron Cusp on Configuration Interaction Energies

    Full text link
    The effect of the electron-electron cusp on the convergence of configuration interaction (CI) wave functions is examined. By analogy with the pseudopotential approach for electron-ion interactions, an effective electron-electron interaction is developed which closely reproduces the scattering of the Coulomb interaction but is smooth and finite at zero electron-electron separation. The exact many-electron wave function for this smooth effective interaction has no cusp at zero electron-electron separation. We perform CI and quantum Monte Carlo calculations for He and Be atoms, both with the Coulomb electron-electron interaction and with the smooth effective electron-electron interaction. We find that convergence of the CI expansion of the wave function for the smooth electron-electron interaction is not significantly improved compared with that for the divergent Coulomb interaction for energy differences on the order of 1 mHartree. This shows that, contrary to popular belief, description of the electron-electron cusp is not a limiting factor, to within chemical accuracy, for CI calculations.Comment: 11 pages, 6 figures, 3 tables, LaTeX209, submitted to The Journal of Chemical Physic
    corecore