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| Abstract
-1
Configuration interaction is applied to the 1p helium continuum
between the first and second quantum thresholds. Discrete configura-
tions are included which give rise to auto-ionization levels (resonances),
Differential oscillator strengths are presented for the non-resonant

region, while positions, widths, and q values are given for the six

lowest lying resonance levels, ﬁ@(#égj




I. Introduction
In the present paper we apply configuration interaction to the cal-
culation of 1P continuum states of helium in the energy range from 0
to 40 eV above the first ionization threshold, which contains a ﬁumber of
auto-ionizing levels. These levels give rise to resonant structure in the
photo-ionization cross section or, alternatively, produce resonances in the
elastic scattering cross section for electrons on He+, While auto-ionization
should be present in the continuous spectrum of all elements, a considerable
amount of experimental and theoretical effort has been devoted to helium
as it is the simplest system displaying the phenomenon. Ree=2nt papers are
listed in Ref. (1-6); these may be consulted for earlier works on the subject.
To find the positions and structure of the levels, the projection

3,4,6.

operator formalism of Feshbach has been applied with success. These ‘

calculations neglect the background continuum and thus provide no informa-
tion on the line widths; however, Burke and McVicar 5 (hereafter called
BMc) have treated the problem in the close-coupling approximation and have

7

obtained values for the position, widths, and q values of the low lying

resonances.

The above authors have established that the auto-ionizing levels
are associated with doubly excited configurations of helium, Thus we
choose wave functions consisting of doubly excited configurations in addition
to configurations for describing the is-kp continuum., The resulting states
show resonant behavior; we compute the positions, widths, and q values
of the six lowest lying 1? auto-ionizing levels, as well as differential

oscillator strengths over the entire energy range., A six parameter
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Hylleraas ground state function was used in these calculations. The
results are in good agreement with BMc; the relationship between our
method and the close-coupling approximation is explored in Sec. II.
Fano8 has laid the groundwork for the use of configuration inter-
action in the analysis of auto-ionization but his treatment depends
upon a pre-diagonalized continuum and does not immediately lend itself

9 have also formulated the

to a numerical calculation. Fano and Prats
problem avoiding the pre-diagonalized basis, an approach which differs

from ours primarily in the suggested method of solution, where we follow

a previous paper by one of the present authors.10



11, Theory

An excited state SZE is constructed from a linear combination of
determinantal functions representing diacrete and continuum configura-
tions of helium. With such a state, we attempt to satisfy the Schro-
dinger equation

H 955 = Ef.gag

(2-1)

for any value of energy E above the ls-kp threshold. The usual helium

Hamiltonian in atomic units is

H=-5 V-

¢S
_I_\7 - 2 _:_Q. | 2-2
22 vty (22

The function 52&5 is then a superposition

g=2 ¢+ de'ae'

¢ (2-3)

where the summation covers the discrete configurations and the inte-
gration runs ovef the ls-kp continuum, (The method of calculation
presented here is not limited to a single continuum, however.) The
subscript "i" denotes all the quantum numbers necessary to specify a
particular configuration., For the continuum function ?%’ the
subscript &€ ’ refers to the sum of the free electron asymptotic kinetic
energy and the 1ls electron bound eﬁerg;. For convenience of notation,
we have suppressed the E-dependence of tPe a-coefficients. |

Among the bound states chosen, as will be discussed later, are



b
those corresponding to the configurations ls-np as well as a number of
doubly excited levels. The inclusion of the latter is necessary in order
to observe resonances in the phase shifts or photo-ionization cross

sections,

Adopting the notation,

Jal'l'n. ‘PjH Y = E,

[dT Y HE = Y, (%)
{am, WrH Y, = Ve,

JdTn ‘/{:H ¢ = e’ S(e-¢') +Veg!

(2-4)

for matrix elements, substituting Eq. (2+3) into (2-1) multiplying by

%E * and integrating yields
Q¢ (E-€)= 2 a; Ve, + Jole'ae' Veer. (2-5)
[4

On the other hand, multiplication by Hﬁf and integration will produce
’ V4 de’ V,
¢+ — . : . .. 6 / * 2“'6
af(E E;) LZ Q, G +j Ae Get, (2-6)

where the prime on the sum indicates that the term for i = } is to be
omitted.
Notice that ag has a singularity for € = E; to obviate this

difficulty, we make the substitution
= - 2-7
b, = ag(E-€), 2-7)

Eqs., (2-5) and (2-6) become
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= a, Ve, + dé'f/’e’véé’
@’6 g: ¢ Y€ TE-¢') , (2-8)

and

/
f — O e - ‘s Iﬂ‘ / V' /
a; (E~E;) Zc_ a; Y, +fal6 /Eié;é ‘ 2oy

Eqs. (2-8) and (2-9) still possess a singularity in the integrands for

s
€ = E, but one which can now be treated formally with the aid of the

p(g__a .,./ﬂE)S(E e) .

( (2-10)

relation

The expression (2-10) is meaningful only in an integrand, where
the P indicates a principal part integratidh 18 to be performed; The
second term contains an unknown eigenvalue p(E); it is an eigenvalue
in that, once E is selected, there is a unique value of /ﬂ?(E) which
will allow the equations below to have a solution. (Later it will be
shown thatlg(E) is closely related to the phase shift of fE.)

Insertion of Eq. (2-10) in (2-8) and (2-9) produces

— . ’ de' e Vee .
1,6_ &Zac Ve, + Pf ﬁf-éé')é + B(E) by VeE) (2-11)

and

/
o; (E-E;)=2Z a4 V5o + P de'be Vie!  aiet Ve
5 ( y) = £ 4 V) f s +BENE Vg s

Eqs. (2-11) and (2-12) are the basic relationships of the configura-

tion interaction; the method of obtaining a solution for them is discussed
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in Sec, III. After a solution to the set of equations is found, we

apply the normalization condition

* !
fdz'm. A S (E-E’)

(2-13)
which determines the eigenvectors completely, giving
ZQ‘P-)‘-PA&‘&'% (E) Uz ¥,
‘ TEay + PE) e YE . (2-14)

The calculations of photo-ionizatién cross sections or differen-
tial oscillator strengths require a ground state function, jﬁ;, for
helium in addition to _‘PE . For this purpose, a six para-
meter Hylleraas function was employed in most of the work. Tbe cacillator

strength in a.u. may be found from the dipole length expression

+1 2 2
ﬁcj_) . LE 3y [RE|Z x|¥
dAE). ~— 3 pz-i o G>/’ (2-15)
or alternately from the velocity expression
AT Z/<c_#/zv/w>/
(AE)-V- 3AE M-t § - " (2-16)

where AE is the excitation energy and the M sum refers to the 1P

substates,

For the calculation of the phase shift r7 , we follow a procedure



-7-

essentially the same as that of Fano 8 leading to

n= - ‘tau"'(lT_)
RE) * (2-17)

The phase shift has two contributions arising from the screening of
the 1s electron and from the interaction of the resonance levels with
the continuum. The former effect is not included in Fano's phase
shift as a result of his continuum pre-diagonalization.

The phase shifts and oscillator strengths are all the physical
information that we can obtain, but when a resonance is being described
these quantities are usually replaced by positions, widths, and line pro-

file indices (q values). To find the width [ and position Ey of a

particular resonance, two approaches are used. First, we fit the phase
shift vs, energy curve in the vicinity of a peak by an expression

o + ql[f + CAN-/(jZEL_

E.-E (2-18)

which is used by BMc to describe an isolated resonance. (The first
two terms in Eq., (2-18) account for the slowly varying background.)
In the other method we obtain eigenvectors of the resonant states
neglecting all ls configurations, an approach described in Ref, (4).
The square of the projection of this vector upon the full eigenvector
is then plotted vs, energy. The result is a Breit-Wigner resonance

shape, from which the width and resonance position may be found by

fitting to the form

ConsY 2
(a2 )2 + (E-Ey) (2-19)
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given essentially in Eq. (13) of Ref. (8). The q values are found

by plotting

< B ITIEY)C
RN AYE

(2-20)

as a function of E in the neighborhood of a resonance,where T is the
/

length or velocity operator, and jg; is the excited state function

with resonance configurations excluded (Hartree-Fock). According to

Fano 8, Eq. (2-20) should have the form

[ﬁ -Mr’)'1

| + € 2 (2-21)
(E-Er) ~
with € = "—i-,/—l—-‘ H Thus q may be found by a least squares
fit,

It is of interest to compare our procedure with that of the more
elaborate close coupling approximation which has been applied by BMc
to HeT. The close coupling wave function for a P state has the
basic form

A [ (x) F(2) + Gul0) R(x) +@y(0) B3]

(2-22)
where Pls(!]) is the 1s orbital for Het, etc., the F's are arbitrary
functions of the proper symmetry, and A is the antisymmetrizing operator.
To determine the F's between the ls-kp and 2s-kp thresholds, F; is given
the form of a free state asymptotically while Fp and F3 vanish exponen-

tially for large X_ . Determining these functions by the application
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of Scheringer% equation yields an expression which implicitly includes
all configurations of the proper asymptotic form in which one electron
is in either the 1ls, 2s, or 2p states of Het. Some of these configura-
tions give rise to resonances, which are observed by a sudden increase
in the phase shift by TV over a narrow energy range.

The wave function used in the present paper can also be written
in the form given by Eq., (2-22), but now the F's are sums of selected
orbitals, As more and more orbitals are included in these sums, our
wave function approaches the close coupling Sunction. However, with
little trouble other configurations could be added which are not present
in Eq. (2-2 2)' e.g.) 3s-3p, making the method quite flexible.

On the otherhand, if the second and third terms in Eq. (2-22) are
omitted, onme has the Hartree-Fock approximation, Inasmuch as our wave
function contains all possible configurations with one electron in the
1ls state, the solution of Eqs (2-11) and (2-12) with all resonant con-
figurations missing should yield the Hartree-Fock results, which is
shown to be the case in Sec. III.

II1,Numerical Methods,

The numerical problem has three main parts: (1) the reduction of
the linear integral equatioms to algebraic equations which may then
be solved by standard techniques; (2) the choice of a basis set and the
computation of the coculomb matrix elements which appear in the basis
equations; (3) the calculation of oscillator strengths and resonance

parameters, These are discussed in turn,
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We wish to express the principal part integral appearing in Eq.
(2-11) or (2-12) as a finite sum. In order to accomplish this, a high
energy cut-off is chosen, and the resulting energy range is divided
into a mesh, We want to find the values of /62 at the mesh poihté.
For a well behaved integrand, all that remains is to employ a numeri-
cal integration scheme, a procedure not adequate here because the
integrand is rapidly varying near the point at which the energy denomi-
nator vanishes., Thus we apply a modified Simpsoﬂ% Rule, by; 1) breaking
the total integral into a sum of integrals, each one over three mesh
points; 2) 1in each integral, expressing the slowly varying factors
in the integrand ( ﬁ-‘e ) Vét‘ ) as a power series in
energy, retaining linear and quadriatic terms; 3) evaluating the re-

maining integrals exactly. For example, consider

P 56A+3~b€ de - Ve; ,e.e
é,x Z E "€) ) (3-1)

where éN is a mesh point and M€ is the mesh spacing. We write

b, = go(e,,) AC) +4, (eu} Ae)e +gj_(é,,/ Ae)é’; (3-2)

where the g's are linear combinations of the o"é)t evaluated at the
mesh points. A similar expression is used for Ve; , and we are

left with integrals of the form

€t Lb€ m
P Se de - & (3-3)
N E-€ '
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which are done exactly. The net effect is to replace the original
integral by a series of terms involving ;@—e at the mesh points.
This approach is limited by how well the functions 4@5 and V';
can be represented by a power series over the intervals used; in
practice such an approximation proved excellent as these functions
are slowly varying with energy.

The continuum is thus replaced by a finite sum, but we must
still treat the ls-np infinite sum which occurs in the bound state
terms. We include explicitly the terms up to n= 9 and replace

the remaining terms by an integral, i.e.

E.
ZVA =~ fE de  Vie Le

9_ 7 - - - .
¥ l»-lot. 6: (3-4)

)

where j runs over the states ls-10p to is- &0 p and Eris the threshold
energy. We have now extended the range of the continuum below threshold.
Treating the integral as described above will lead to the appearance

of jLEﬁAfﬂoo— " in the equations. In order to avoid enlarging

the size of the matrix, we make the replacement

/@EIA'IO‘. = af 4&1-7;(5- E“’f&) . (3-5)

Egs. (3-4) and (3-5) are justified in the appendix.11

The set of integral equations is now reduced to a set of alge-
braic equations. The basis consistse of(properly symmetrized) two
particle eigenfunctions of angular momeﬁtum which are constructed

from products of hydrogenic functions. sThe configurations used are:
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1s-np, (n= 2, 9); 1s-kp, (k=0, 3.0 a.,u. in intervals of 0.2 a.u.);
2s-np (n = 2,5); 2p-ns (n = 3,5); 2p-nd (n = 3,5).12 In the 1s
configurations the choices Z = 2 for the 1s orbital and 2 = 1 for
the p orbital were made, a selection which makes the potential for the
p orbitals asymptotically correct. The 'remaining configurations are
included for the purpose of analyzing the resonances.' For this task,
the cholce Z= 2 for all of these orbitals gives good results.4 Note
that the basis of two particle functions is still an orthogonal set,

The Coulomb matrix elements were found by evaluating exact ex-
pressions for those integrals involving'no more than one continuum
function, and were done numerically otherwise,

The eigenvectors are obtained by diagonalizing a 34x34 matrix,
The problem is not a conventional eiéen;alué probiem,«however,'because
the eigenvalue 3 (E) always appears as the cgefficient of bgp in
Eqs. (2-11) and (2-12). Thus the characteristic equation is of order
1 instead of 34. We solve these equations using procedures described
in Ref., (10).13

In order to evaluate the expression in Eqs. (2-14) and (2-16)
the dipole elements between the ground state and each of the basis
set were found., The remaining integral over the energy was evaluated
by the same method as was used in reducing the set of integral equations

to algebraic equations.
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IV, Results and Conclusions

We first discuss the oscillator strengths in regions far from
the resonances. These were calculated initially by omitting all resonant
configurations from the matrix, an approximation which cofrésponds to the
HartreewFock method for calculating coniinuum states. Since such calcu-
lations have already been done, we were able to check our numerical
work. The comparison is given in Table I, showing that our procedure
can reproduce the Hartree=-Fock results, Stewart and Webb15 ugsed a
Hylleraas function different from the one employed here, a fact which
may account for the discrepancy at threéhold in the 1ength values.

Values of the oscillator strength ?t various energies are presented
in Table ;I. WgaincluQe the Eesultq of a galculation performed with a
three parameter Hylleraas function, the purpose of which was to observe
the effect of ground state modification, Reéall from Sec. 1I that the
close-coupling approximation implicitly includes all resonant configura-
tions in which one electron is in either the 2s or 2p state of He¥,
Therefore, a comparison of results with BMc indicates the importance of
the configurations which were omitted in the present paper, although
there may be also an effect from the ground state since BMc use a
2leparameter function.

A study of Table II shows that the 6-parameter velocity results
come nearer to the close coupling values than the length resgults do,
which seems to indicate that the veloci;y formulation is to be favored.

On the other hand, this conclusion does not follow from the 3-parameter

values. Here we have the surprising situation that the length results
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agree well with BMc while the velocity do not. Note also that the
difference between the length and velocity values is smaller with
the 3~ than the 6- parameter function.

Our conclusions are: (1) The resonant states have a very small
effect on the continuum oscillator strengths at non-resonant energies.
The agreement between the 6~parameter velocity values and BMc then
is due to the unimportance of the omitted configurations. (2) The
velocity formulation is to be preferred over the length. We consider
that the agreement between the 3-parameter length results and BMc is
fortuitous. The agreement between length and velocity results is a
necessary but not sufficient condition to guarantee accuracy. The
3-parameter results provide us with an example of length and velocity
in good agreement with each other, but not agreeiﬁg with more elaborate
calculations,

It is interesting to compare our phase shifts with those calculated
by BMc, These data are given in Table II1I, where we see that the
addition of the 10 resonant configurations accounts for about one third
to one tenth of the discrepancy between BMc and Hartree-Fock values,

The method of finding the position and width of the resonances is
described in Sec., III., As an illustration, in figure 1, a plot of the
square of the amplitude of the eigenvector. for the (2-2)+ resonance is

shown. 16

Also shown is the position of the resonance before it is
coupled to the continuum, The shape closely approximates a Breit- Wigner

single level resonance form, a characteristic of all the resonances

treated here.
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In Fable IV the positions Ep 'shifts due to interaction with the
continuum AR’I and widths | are listed along with those from
BMc and the experimental results of Madden and Codling.2 The width of
the 3d state was not found because too few significant figures were
carried for accuracy. A study of Table IV shows that we are in good
agreement with BMe,

All of the resonances are well described by Fano's line shape
formula, Eq. (2-21), 1In figure 2, we plot the line profile of the
(2-3)+ and (2-3)- resonances superimposed, The six parameter velocity
q values are used. Since the observation of the shape of the (2-3)+
resonance is just possible, the figure illustrates that a sizeable im-
provement in resolution will be necessary in order to study the shape
of the (2-3)-, in Tablé v, wevlist ourq-values'aiong wiﬁh BMc and
those of Madden and Codling., The greatest difference between the six
parameter results and BMc is less than iOZ in the velocity formulation
and more than 20% in the length formulation, a feature which is also
present in the three-parameter values, again emphasizing that the
velocity formulation is preferable.

Our results, taken as a whole, serve as an independent check on
BMc, inasmuch as many of the quantities calcula ted there have not yet
been measured,

We hav uration interection is capable of giving
reliable results for the continuum differential oscillator strength as

well as providing a natural way to describe resonances, The procedure

has several advantages, such as; 1) the interaction matrix elements
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need be computed only once. Thus the solutions at different energies
involve only diagonalization of a known matrix, a process which does
not involve much computer time; 2) the flexibility of adding or sub-
tracting configurations as their effect is understood; 3) complete
freedom as to choice of basis. We hope these points will allow applica-

tion to more complex atoms in the future,
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Appendix
To arrive at Eq. (3-4), we assume that the energies of the states
1s-10p to 1ls-g9p are so closely spaced that we may replace the sum over
these states by an integral, i.e,
EF :
/
Z Vijay X J‘*e g8) Ve A

lslop

(a-1)

/
The function %6 is a continous function of € , found from V,;

by any interpolation scheme; similar remarks apply to Clé .

We apply the equations

V.

~€

= V. .F

to arrive at

Els -log Elo—lof (A-3)

The quantities \&é and “z: are only defined above threshold, but we
assume the validity of Eqs. (A-2) in the range from [E, _ to E:T'
lo~loy

With the substitution given by Eq. (2-7) we have

E

sV a: 2 (T g Vig Ke

; * ¢ Je 7E=<] (A
':/4"/0’— \ 7

In order to arrive at Eq. (3-5), we observe that for nxji)l

- ONST,
4/}*-»1._"' —C-R-;Sf;"‘ | (A-5)
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This expression follows from Eq. (2-12) and the fact that

S CONST,
\V ~ R

lo-my ) < ,“_3/1

(Eq. (A-5) was checked with actual solutions for,@— and £- an
-8y L
was satisfied to ~s .1%) Applying Eq. (A-5), we have

. 3
'6_10—/0/;«;: (/l"—) 3.'6%-70;

and using Eq. (A-2)

‘é’é = /6’14""—1» 1)’5

Finally,
= J [03 Y
‘e—E/A-‘lp*, — 4:—/}-101, _i_f = ’e—/p.-/o?_ . /0

for our case in which Z = 1. Combining Eq. (A-6) and (A-8), the

4—EI»——Ioj,_ ~ }7 ’@4'79- .

d

(A-6)

(A-7)

(A-8)

result is

(A-9)
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Table I. Comparison of Hartree-Fock calculations.

of Stewart and Wilkinson,
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14

Column A lists the work

column: 8 the work of Sﬁeﬁart and

Energy Above df in Length (L) and Velocity (V)
Threshold (Ryd) dE Formulations
A. B, Present Paper
L v L \') L \

Q 898 .890 .916 .886 .894 .886
.2 .792 .758 .788 .768
.5 .638 . 638

1.0 449 .422 440 .418 .450 419
2.0 .234 .224 .239 .222




Table I1. The differential oscillator strength (Ryd.'l)
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at non resonant
energies in the length (L) and velocity (V) formulations,

Energy Above daf
Threshold (Ryd) dE
BMc 6-Param, 3-Param,
L \') L \'A L \'i

.0 - - - .890 .879 .873 .901

.2 . 7779 . 7628 .790 . 762 .776 .781

.4 .6678 .6532 .684 .650 .673 . 666

.6 .5758 . 5634 .593 .559 .584 .572

.8 .4990 .4870 .514 .483 .507 494
1.0 4348 4245 449 421 443 429
1.2 .3812 .3722 .391 .368 .387 .375
1.4 .3363 .3283 .345 .324 342 .330
1.6 .2984 .2915 .303 .286 .301 .291
1.8 .2664 .2603 .271 .255 .270 .259
2,0 .2395 .2338 . 242 .228 .240 .231
2,2 L2172 .2120 .217 .206 .216 .209
2.4 .2003 1956 .200 .189 .198 .191
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Table III., P wave phase shifts in radians. '"Full matrix" means that the
resonant configurations are included.

Energy Above Threshold

(Ryd) BMc Full Matrix Hartree-Fock
.0 - -,0667 -,0731
.2 -.0605 -.0735 -.0772
b -.0631 -.0769 -.0792
.6 -.0641 -,0782 -,0798
.8 -.0636 -,0782 -.0794
1.0 -,0622 -.0769 -,0779
1.2 -.0600 -.0750 -,0760
1.4 -.0571 -.0721 -,0735
1.6 -.0536 -,0688 -.,0707
1.8 -.0495 -.0649 -.0674
2.0 -.0447 -.0605 =, 0642
2.2 -.0388 -.0533 -,0608
2.4 -.0302 -.0479 -.0572
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Figure Captions

Figure 1. The squared amplitude of the 2s-2p discrete state: ( iiés-Zp)
in the full wave function near the (2-2)+ resonance., The width r1,
the position, Er, and the energy shift due to interaction with the
continuum Zﬂy~ are shown. The x's are the computed points; the solid

curve is the fit to a Breit-Wigner form.

Figure 2, A comparison of the {2-3)+ and (2-3)- line profiles.

Energy is measured from E . for both curves.
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