89 research outputs found

    CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR

    Full text link
    We introduce a novel method for odometry estimation using convolutional neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D matrices for the training of proposed networks and for the prediction. Our networks show significantly better precision in the estimation of translational motion parameters comparing with state of the art method LOAM, while achieving real-time performance. Together with IMU support, high quality odometry estimation and LiDAR data registration is realized. Moreover, we propose alternative CNNs trained for the prediction of rotational motion parameters while achieving results also comparable with state of the art. The proposed method can replace wheel encoders in odometry estimation or supplement missing GPS data, when the GNSS signal absents (e.g. during the indoor mapping). Our solution brings real-time performance and precision which are useful to provide online preview of the mapping results and verification of the map completeness in real time

    LO-Net: Deep Real-time Lidar Odometry

    Full text link
    We present a novel deep convolutional network pipeline, LO-Net, for real-time lidar odometry estimation. Unlike most existing lidar odometry (LO) estimations that go through individually designed feature selection, feature matching, and pose estimation pipeline, LO-Net can be trained in an end-to-end manner. With a new mask-weighted geometric constraint loss, LO-Net can effectively learn feature representation for LO estimation, and can implicitly exploit the sequential dependencies and dynamics in the data. We also design a scan-to-map module, which uses the geometric and semantic information learned in LO-Net, to improve the estimation accuracy. Experiments on benchmark datasets demonstrate that LO-Net outperforms existing learning based approaches and has similar accuracy with the state-of-the-art geometry-based approach, LOAM

    Enabling Multi-LiDAR Sensing in GNSS-Denied Environments: SLAM Dataset, Benchmark, and UAV Tracking with LiDAR-as-a-camera

    Get PDF
    The rise of Light Detection and Ranging (LiDAR) sensors has profoundly impacted industries ranging from automotive to urban planning. As these sensors become increasingly affordable and compact, their applications are diversifying, driving precision, and innovation. This thesis delves into LiDAR's advancements in autonomous robotic systems, with a focus on its role in simultaneous localization and mapping (SLAM) methodologies and LiDAR as a camera-based tracking for Unmanned Aerial Vehicles (UAV). Our contributions span two primary domains: the Multi-Modal LiDAR SLAM Benchmark, and the LiDAR-as-a-camera UAV Tracking. In the former, we have expanded our previous multi-modal LiDAR dataset by adding more data sequences from various scenarios. In contrast to the previous dataset, we employ different ground truth-generating approaches. We propose a new multi-modal multi-lidar SLAM-assisted and ICP-based sensor fusion method for generating ground truth maps. Additionally, we also supplement our data with new open road sequences with GNSS-RTK. This enriched dataset, supported by high-resolution LiDAR, provides detailed insights through an evaluation of ten configurations, pairing diverse LiDAR sensors with state-of-the-art SLAM algorithms. In the latter contribution, we leverage a custom YOLOv5 model trained on panoramic low-resolution images from LiDAR reflectivity (LiDAR-as-a-camera) to detect UAVs, demonstrating the superiority of this approach over point cloud or image-only methods. Additionally, we evaluated the real-time performance of our approach on the Nvidia Jetson Nano, a popular mobile computing platform. Overall, our research underscores the transformative potential of integrating advanced LiDAR sensors with autonomous robotics. By bridging the gaps between different technological approaches, we pave the way for more versatile and efficient applications in the future

    DeepICP: An End-to-End Deep Neural Network for 3D Point Cloud Registration

    Full text link
    We present DeepICP - a novel end-to-end learning-based 3D point cloud registration framework that achieves comparable registration accuracy to prior state-of-the-art geometric methods. Different from other keypoint based methods where a RANSAC procedure is usually needed, we implement the use of various deep neural network structures to establish an end-to-end trainable network. Our keypoint detector is trained through this end-to-end structure and enables the system to avoid the inference of dynamic objects, leverages the help of sufficiently salient features on stationary objects, and as a result, achieves high robustness. Rather than searching the corresponding points among existing points, the key contribution is that we innovatively generate them based on learned matching probabilities among a group of candidates, which can boost the registration accuracy. Our loss function incorporates both the local similarity and the global geometric constraints to ensure all above network designs can converge towards the right direction. We comprehensively validate the effectiveness of our approach using both the KITTI dataset and the Apollo-SouthBay dataset. Results demonstrate that our method achieves comparable or better performance than the state-of-the-art geometry-based methods. Detailed ablation and visualization analysis are included to further illustrate the behavior and insights of our network. The low registration error and high robustness of our method makes it attractive for substantial applications relying on the point cloud registration task.Comment: 10 pages, 6 figures, 3 tables, typos corrected, experimental results updated, accepted by ICCV 201

    LiDAR-Based Place Recognition For Autonomous Driving: A Survey

    Full text link
    LiDAR-based place recognition (LPR) plays a pivotal role in autonomous driving, which assists Simultaneous Localization and Mapping (SLAM) systems in reducing accumulated errors and achieving reliable localization. However, existing reviews predominantly concentrate on visual place recognition (VPR) methods. Despite the recent remarkable progress in LPR, to the best of our knowledge, there is no dedicated systematic review in this area. This paper bridges the gap by providing a comprehensive review of place recognition methods employing LiDAR sensors, thus facilitating and encouraging further research. We commence by delving into the problem formulation of place recognition, exploring existing challenges, and describing relations to previous surveys. Subsequently, we conduct an in-depth review of related research, which offers detailed classifications, strengths and weaknesses, and architectures. Finally, we summarize existing datasets, commonly used evaluation metrics, and comprehensive evaluation results from various methods on public datasets. This paper can serve as a valuable tutorial for newcomers entering the field of place recognition and for researchers interested in long-term robot localization. We pledge to maintain an up-to-date project on our website https://github.com/ShiPC-AI/LPR-Survey.Comment: 26 pages,13 figures, 5 table
    • …
    corecore