6 research outputs found

    Simulation Analysis on the Potential Application of Matched Bandstop to Bandpass Filter in Filter Integrated SPDT Switch Design

    Get PDF
    This paper presents the simulation analysis on the potential application of matched bandstop to bandpass filter in filter integrated switch (FIS) design. The FIS consists of matched band-stop to bandpass filter integrated with single-pole-double-throw (SPDT) switch. The proposed design was demonstrated for 2.45 GHz applications in wireless data communication systems such as Bluetooth and Zigbee. The filter was based on L-shape lossy resonator, which can provide an absorptive feature. PIN diodes were used as switching elements for the SPDT switch and to reconfigure between band-stop and bandpass responses. Therefore, the key advantages of the proposed design are high isolation and good return loss at both ON- and OFF-state ports. As a result, the simulation showed the followings: higher than 10 dB of return loss and greater than 25 dB of isolation at the operation frequency

    Simulation Analysis On The Potential Application Of Matched Bandstop To Bandpass Filter In Filter Integrated SPDT Switch Design

    Get PDF
    This paper presents the simulation analysis on the potential application of matched bandstop to bandpass filter in filter integrated switch (FIS) design.The FIS consists of matched band-stop to bandpass filter integrated with singlepole-double-throw (SPDT) switch. The proposed design was demonstrated for 2.45 GHz applications in wireless data communication systems such as Bluetooth and Zigbee.The filter was based on L-shape lossy resonator,which can provide an absorptive feature. PIN diodes were used as switching elements for the SPDT switch and to reconfigure between band-stop and bandpass responses.Therefore,the key advantages of the proposed design are high isolation and good return loss at both ON-and OFF-state ports.As a result,the simulation showed the followings:higher than 10 dB of return loss and greater than 25 dB of isolation at the operation frequency

    High Slew-Rate Adaptive Biasing Hybrid Envelope Tracking Supply Modulator for LTE Applications

    Get PDF
    abstract: As wireless communication enters smartphone era, more complicated communication technologies are being used to transmit higher data rate. Power amplifier (PA) has to work in back-off region, while this inevitably reduces battery life for cellphones. Various techniques have been reported to increase PA efficiency, such as envelope elimination and restoration (EER) and envelope tracking (ET). However, state of the art ET supply modulators failed to address high efficiency, high slew rate, and accurate tracking concurrently. In this dissertation, a linear-switch mode hybrid ET supply modulator utilizing adaptive biasing and gain enhanced current mirror operational transconductance amplifier (OTA) with class-AB output stage in parallel with a switching regulator is presented. In comparison to a conventional OTA design with similar quiescent current consumption, proposed approach improves positive and negative slew rate from 50 V/µs to 93.4 V/µs and -87 V/µs to -152.5 V/µs respectively, dc gain from 45 dB to 67 dB while consuming same amount of quiescent current. The proposed hybrid supply modulator achieves 83% peak efficiency, power added efficiency (PAE) of 42.3% at 26.2 dBm for a 10 MHz 7.24 dB peak-to-average power ratio (PAPR) LTE signal and improves PAE by 8% at 6 dB back off from 26.2 dBm power amplifier (PA) output power with respect to fixed supply. With a 10 MHz 7.24 dB PAPR QPSK LTE signal the ET PA system achieves adjacent channel leakage ratio (ACLR) of -37.7 dBc and error vector magnitude (EVM) of 4.5% at 26.2 dBm PA output power, while with a 10 MHz 8.15 dB PAPR 64QAM LTE signal the ET PA system achieves ACLR of -35.6 dBc and EVM of 6% at 26 dBm PA output power without digital pre-distortion (DPD). The proposed supply modulator core circuit occupies 1.1 mm2 die area, and is fabricated in a 0.18 µm CMOS technology.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    An agile supply modulator with improved transient performance for power efficient linear amplifier employing envelope tracking techniques

    Get PDF
    This article presents an agile supply modulator with optimal transient performance that includes improvement in rise time, overshoot and settling time for the envelope tracking supply in linear power amplifiers. For this purpose, we propose an on-demand current source module: the bang-bang transient performance enhancer (BBTPE). Its objective is to follow fast variations in input signals with reduced overshoot and settling time without deteriorating the steady-state performance of the buck regulator. The proposed approach enables fast system response through the BBTPE and an accurate steady-state output response through a low switching ripple and power efficient dynamic buck regulator. Fast output response with the help of the added module induces a slower rise of inductor current in the buck converter that further helps the proposed system to reduce both overshoot and settling time. This article also introduces an efficient selective tracking of envelope signal for linear PAs. To demonstrate the feasibility of the proposed solution, extensive simulations and experimental results from a discrete system are reported. The proposed supply modulator shows 80% improvement in rise time along with 60% reduction in both overshoot and settling time compared to the conventional dynamic buck regulator-based solution. Experimental results using the LTE 16-QAM 5 MHz standard shows improvement of 7.68 dB and 65.1% in adjacent channel power ratio (ACPR) and error vector magnitude (EVM), respectively.Peer ReviewedPostprint (author's final draft

    RF Power Amplifier and Its Envelope Tracking

    Get PDF
    This dissertation introduces an agile supply modulator with optimal transient performance for the envelope tracking supply in linear power amplifiers. For this purpose, an on-demand current source module, the bang-bang transient performance enhancer (BBTPE), is proposed. Its objective is to follow fast variations in input signals with reduced overshoot and settling time without deteriorating the steady-state performance of the buck regulator. The proposed approach enables fast system response through the BBTPE and an accurate steady-state output response through a low switching ripple and power efficient dynamic buck regulator. Fast output response with the help of the added module induces a slower rise of inductor current in the buck converter that further assists the proposed system to reduce both overshoot and settling time. To demonstrate the feasibility of the proposed solution, extensive simulations and experimental results from a discrete system are reported. The proposed supply modulator shows 80% improvement in rise time along with 60% reduction in both overshoot and settling time compared to the conventional dynamic buck regulator-based solution. Experimental results for a PA using the LTE 16-QAM 5 MHz standard shows improvement of 7.68 dB and 65.1% in ACPR and EVM, respectively. In a polar power amplifier, the input signal splits into phase and amplitude components using a non-linear conversion operation. This operation broadens the spectrum of the polar signal components. The information of amplitude and phase contains spectral images due to the sampling operation in non-linear conversion operation. These spectral images can be large and cause out-of-band emission in the output spectrum. In addition, during the recombination process of phase and amplitude, a delay mismatch between amplitude and phase signals, which can occur due to separate processing paths of amplitude and phase signals, causes out-of-band emissions, also known as spectral regrowth. This dissertation presents solutions to both of the issues of digital polar power amplifier: spectral images and delay mismatch. In order to reduce the problem of spectral images, interpolation of phase and amplitude is proposed in this work. This increases the effective sampling frequency of the amplitude and phase, which helps to improve the linearity by around 10 dB. In addition, a novel calibration scheme is proposed here for the delay mismatch between phase and amplitude path in a digital polar power amplifier. The scheme significantly reduces the spectral regrowth. The scheme uses the same path for phase and amplitude delay calculation after the recombination that allows having a robust calibration. Furthermore, it can be executed during the empty transmission slots. The proposed scheme is designed in a 40 nm CMOS technology and simulated with a 64-QAM IEEE 802.11n wireless standard. The scheme achieved 7.57 dB enhancement in ACLR and 84.35% improvement in EVM for a 3.5 ns mismatch in phase and amplitude path

    RF Power Amplifier and Its Envelope Tracking

    Get PDF
    This dissertation introduces an agile supply modulator with optimal transient performance for the envelope tracking supply in linear power amplifiers. For this purpose, an on-demand current source module, the bang-bang transient performance enhancer (BBTPE), is proposed. Its objective is to follow fast variations in input signals with reduced overshoot and settling time without deteriorating the steady-state performance of the buck regulator. The proposed approach enables fast system response through the BBTPE and an accurate steady-state output response through a low switching ripple and power efficient dynamic buck regulator. Fast output response with the help of the added module induces a slower rise of inductor current in the buck converter that further assists the proposed system to reduce both overshoot and settling time. To demonstrate the feasibility of the proposed solution, extensive simulations and experimental results from a discrete system are reported. The proposed supply modulator shows 80% improvement in rise time along with 60% reduction in both overshoot and settling time compared to the conventional dynamic buck regulator-based solution. Experimental results for a PA using the LTE 16-QAM 5 MHz standard shows improvement of 7.68 dB and 65.1% in ACPR and EVM, respectively. In a polar power amplifier, the input signal splits into phase and amplitude components using a non-linear conversion operation. This operation broadens the spectrum of the polar signal components. The information of amplitude and phase contains spectral images due to the sampling operation in non-linear conversion operation. These spectral images can be large and cause out-of-band emission in the output spectrum. In addition, during the recombination process of phase and amplitude, a delay mismatch between amplitude and phase signals, which can occur due to separate processing paths of amplitude and phase signals, causes out-of-band emissions, also known as spectral regrowth. This dissertation presents solutions to both of the issues of digital polar power amplifier: spectral images and delay mismatch. In order to reduce the problem of spectral images, interpolation of phase and amplitude is proposed in this work. This increases the effective sampling frequency of the amplitude and phase, which helps to improve the linearity by around 10 dB. In addition, a novel calibration scheme is proposed here for the delay mismatch between phase and amplitude path in a digital polar power amplifier. The scheme significantly reduces the spectral regrowth. The scheme uses the same path for phase and amplitude delay calculation after the recombination that allows having a robust calibration. Furthermore, it can be executed during the empty transmission slots. The proposed scheme is designed in a 40 nm CMOS technology and simulated with a 64-QAM IEEE 802.11n wireless standard. The scheme achieved 7.57 dB enhancement in ACLR and 84.35% improvement in EVM for a 3.5 ns mismatch in phase and amplitude path
    corecore