777 research outputs found

    A Class-AB/D Audio Power Amplifier for Mobile Applications Integrated Into a 2.5G/3G Baseband Processor

    Get PDF
    A filterless class-AB/D audio power amplifier integrated into a feature-rich 2.5G/3G baseband processor in standard 65-nm CMOS technology is designed for direct battery hookup in mobile phone applications. Circuit techniques are used to overcome the voltage limitations of standard MOS transistors for operation at voltage levels of 2.5-4.8 V. Both amplifiers can drive more than 650 mW into an 8-Omega load with maximum distortion levels of 1% and 5% for class-D and class-AB, respectively, all from a 3.6-V power supply. The achieved power-supply-rejection ratios are 72 and 84 dB, respectively. The mono implementation of both amplifiers together is 0.44 mm(2)

    RF transceiver design for electronic toll collection system (ETC) using compact dipole antenna

    Get PDF
    Electronic Toll Collection (ETC) system is one of the types of traffic control system that has rapid development in the recent years. ETC system is one of the major applications of Dedicated Short Range Communication (DSRC) which operates in the frequency band of 5.8GHz, used for the transfer of information between the road side unit (RSU) and the on board unit (OBU) which are situated at the toll station and on the vehicle respectively. The working of the system is based on RFID technology. ETC system is implemented in the 0.18microm CMOS technology, which is an aggressive technology in terms of its low cost and easy integration of the RF circuits.;A compact dipole antenna based low-cost RF transceiver for ETC system is designed in this thesis. Amplitude Shift Keying (ASK) modulation technique is employed in the implemented RF transceiver. In transmitter side, a class-E power amplifier is used to amplify the signal power. In order to send and receive the signal, a dipole antenna operating at a frequency of 5.8GHz is used. A low-power and energy efficient Low-Noise Amplifier (LNA) is used in the receiver block which consumes very less power and has a minimal noise figure compared with prior arts. A self-mixer is used for the down-conversion of the signal. Results of this design demonstrate the working of the transceiver at 5.8GHz frequency up to an input data rate of 400 Mbps

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    High Slew-Rate Adaptive Biasing Hybrid Envelope Tracking Supply Modulator for LTE Applications

    Get PDF
    abstract: As wireless communication enters smartphone era, more complicated communication technologies are being used to transmit higher data rate. Power amplifier (PA) has to work in back-off region, while this inevitably reduces battery life for cellphones. Various techniques have been reported to increase PA efficiency, such as envelope elimination and restoration (EER) and envelope tracking (ET). However, state of the art ET supply modulators failed to address high efficiency, high slew rate, and accurate tracking concurrently. In this dissertation, a linear-switch mode hybrid ET supply modulator utilizing adaptive biasing and gain enhanced current mirror operational transconductance amplifier (OTA) with class-AB output stage in parallel with a switching regulator is presented. In comparison to a conventional OTA design with similar quiescent current consumption, proposed approach improves positive and negative slew rate from 50 V/µs to 93.4 V/µs and -87 V/µs to -152.5 V/µs respectively, dc gain from 45 dB to 67 dB while consuming same amount of quiescent current. The proposed hybrid supply modulator achieves 83% peak efficiency, power added efficiency (PAE) of 42.3% at 26.2 dBm for a 10 MHz 7.24 dB peak-to-average power ratio (PAPR) LTE signal and improves PAE by 8% at 6 dB back off from 26.2 dBm power amplifier (PA) output power with respect to fixed supply. With a 10 MHz 7.24 dB PAPR QPSK LTE signal the ET PA system achieves adjacent channel leakage ratio (ACLR) of -37.7 dBc and error vector magnitude (EVM) of 4.5% at 26.2 dBm PA output power, while with a 10 MHz 8.15 dB PAPR 64QAM LTE signal the ET PA system achieves ACLR of -35.6 dBc and EVM of 6% at 26 dBm PA output power without digital pre-distortion (DPD). The proposed supply modulator core circuit occupies 1.1 mm2 die area, and is fabricated in a 0.18 µm CMOS technology.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Custom Integrated Circuit Design for Portable Ultrasound Scanners

    Get PDF

    An Integrated ISFETs Instrumentation System in Standard CMOS Technology

    No full text
    Published versio

    Analog baseband circuits for sensor systems

    Get PDF
    This thesis is composed of six publications and an overview of the research topic, which also summarizes the work. The research presented in this thesis focuses on research into analog baseband circuits for sensor systems. The research is divided into three different topics: the integration of analog baseband circuits into a radio receiver for sensor applications; the integration of an ΔΣ modulator A/D converter into a GSM/WCDMA radio receiver for mobile phones, and the integration of algorithmic A/D converters for a capacitive micro-accelerometer interface. All the circuits are implemented using deep sub-micron CMOS technologies. The work summarizes the design of different blocks for sensor systems. The research into integrated analog baseband circuits for a radio receiver focuses on a circuit structures with a very low power dissipation and that can be implemented using only standard CMOS technologies. The research into integrated ΔΣ modulator A/D converter design for a GSM/WCDMA radio receiver for mobile phones focuses on the implications for analog circuit design emerging from using a very deep sub-micron CMOS process. Finally, in the research into algorithmic A/D converters for a capacitive microaccelerometer interface, new ways of achieving a good performance with low power dissipation, while also minimizing the silicon area of the integrated A/D converter are introduced

    An agile supply modulator with improved transient performance for power efficient linear amplifier employing envelope tracking techniques

    Get PDF
    This article presents an agile supply modulator with optimal transient performance that includes improvement in rise time, overshoot and settling time for the envelope tracking supply in linear power amplifiers. For this purpose, we propose an on-demand current source module: the bang-bang transient performance enhancer (BBTPE). Its objective is to follow fast variations in input signals with reduced overshoot and settling time without deteriorating the steady-state performance of the buck regulator. The proposed approach enables fast system response through the BBTPE and an accurate steady-state output response through a low switching ripple and power efficient dynamic buck regulator. Fast output response with the help of the added module induces a slower rise of inductor current in the buck converter that further helps the proposed system to reduce both overshoot and settling time. This article also introduces an efficient selective tracking of envelope signal for linear PAs. To demonstrate the feasibility of the proposed solution, extensive simulations and experimental results from a discrete system are reported. The proposed supply modulator shows 80% improvement in rise time along with 60% reduction in both overshoot and settling time compared to the conventional dynamic buck regulator-based solution. Experimental results using the LTE 16-QAM 5 MHz standard shows improvement of 7.68 dB and 65.1% in adjacent channel power ratio (ACPR) and error vector magnitude (EVM), respectively.Peer ReviewedPostprint (author's final draft

    Fifth-order Polynomial Predistortion for Mach-Zehnder Modulator Linearization

    Get PDF
    Modern wireless applications require access to ultra-wide instantaneous RF bandwidths to provide frequency agility and multi-band RF processing. Wireless communications, radar and electronic warfare are examples of applications that will benefit from wideband multi-function transceivers. The role of the front-end filtering is critical in order for the multi-function transceiver to achieve adequate RF performance. Integrated electric filters are unable to achieve the required frequency selectivity and tuning range mainly due to low Q of on-chip inductors. This renders a complete integrated solution impractical. Normally, high frequency and high selectivity filters are achieved with off-chip bulky SAW filters. The limitation of electrical filters has motivated the employment of RF photonic receivers. The main issue with photonics is the cost but in recent times the emergence of silicon photonics has enabled the potential of RF photonics receivers to be implemented at a low cost. The use of photonics gives access to devices that can achieve really high Q and high integration at high frequencies. At the heart of the photonic receiver is the Mach-Zehnder modulator (MZM). It modulates the received signal from the antenna to the optical carrier. The major issue with the MZM is: it is non-linear and wideband. The MZM is placed before the photonic filter and right after the antennae so interferers received with the desired RF signal generate intermodulation products at the output of the MZM. The intermodulation products can be very close to the desired RF signal so they cannot be filtered out by the photonic filter and may corrupt the desired RF signal. To curtail the effects of the MZM non-linearity, linearization schemes are implemented to reduce the amplitude of the intermodulation products generated when the MZM receives interferers. This thesis work focuses on two main issues, Firstly, analysis of the intermodulation products generated by the MZM when a two tone RF signal is applied. Secondly, a literature review is done to examine the existing linearization schemes. Based on the predistortion linearization scheme, a new fifth-order predistortion is proposed. The proposed fifth-order predistortion is fabricated in GP 65nm TSMC CMOS process. The proposed fifth-order linearization achieves high IM3 suppression~ 20dB at high modulation index ~49.7% with 49.2mW of power consumed
    • …
    corecore