98,465 research outputs found

    Ciprofloxacin reduces the stimulation of prostaglandin E2 output by interleukin-1 in human tendon-derived cells

    Get PDF
    Fluoroquinolone antibiotics such as ciprofloxacin can induce tendon pathology and have various effects on tendon-derived cells in culture. We are investigating whether ciprofloxacin modifies signalling responses in tendon cells. Human Achilles tendon-derived cells were preincubated with or without ciprofloxacin (50?µg/ml) and were then challenged with interleukin-1ß (IL-1ß, 1?ng/ml) for up to 48?h. Prostaglandin E2 (PGE2) output was assayed by ELISA. The expression of cyclooxygenase-2 (COX-2) was examined by Western blotting. IL-1ß stimulated a substantial and prolonged increase in the output of PGE2. Preincubation with ciprofloxacin reduced IL-1ß-induced PGE2 output at all times tested; the reduction at 48?h was 69% (99% confidence interval 59–79%; 15 experiments). Norfloxacin and ofloxacin also reduced PGE2 output. However, ciprofloxacin did not affect the induction of COX-2 by IL-1ß, measured at 4 or 48?h. Ciprofloxacin reduces IL-1ß-induced PGE2 output in tendon-derived cells. The reduction in PGE2 output could modulate various cellular activities of IL-1ß, and may be implicated in fluoroquinolone-induced tendinopathy

    Ciprofloxacin enhances the stimulation of matrix metalloproteinase 3 expression by interleukin-1beta in human tendon-derived cells

    Get PDF
    To determine whether the fluoroquinolone antibiotic ciprofloxacin, which can cause tendon pain and rupture in a proportion of treated patients, affects the expression of matrix metalloproteinases (MMPs) in human tendon-derived cells in culture. Cell cultures were derived from 6 separate tendon explants, and were incubated in 6-well culture plates for 2 periods of 48 hours each, with ciprofloxacin (or DMSO in controls) and interleukin-1ß (IL-1ß), alone and in combination. Samples of supernatant medium from the second 48-hour incubation were assayed for MMPs 1, 2, and 3 by Western blotting. RNA was extracted from the cells and assayed for MMP messenger RNA (mRNA) by semiquantitative reverse transcription–polymerase chain reaction, with normalization for GAPDH mRNA. Unstimulated tendon cells expressed low or undetectable levels of MMP-1 and MMP-3, and substantial levels of MMP-2. IL-1ß induced a substantial output of both MMP-1 and MMP-3 into cell supernatants, reflecting increases (typically 100-fold) in MMP mRNA, but had only minor effects on MMP-2 expression. Ciprofloxacin had no detectable effect on MMP output in unstimulated cells. Preincubation with ciprofloxacin potentiated IL-1ß–stimulated MMP-3 output, reflecting a similar effect on MMP-3 mRNA expression. Ciprofloxacin also potentiated IL-1ß–stimulated MMP-1 mRNA expression, but did not potentiate the output of MMP-1, and had no significant effects on MMP-2 mRNA expression or output. Ciprofloxacin can selectively enhance MMP expression in tendon-derived cells. Such effects might compromise tendon microstructure and integrity

    Evaluation of Drug Delivery and Efficacy of Ciprofloxacin-Loaded Povidone Foils and Nanofiber Mats in a Wound-Infection Model Based on Ex Vivo Human Skin

    Get PDF
    Topical treatment of wound infections is often a challenge due to limited drug availability at the site of infection. Topical drug delivery is an attractive option for reducing systemic side effects, provided that a more selective and sustained local drug delivery is achieved. In this study, a poorly water-soluble antibiotic, ciprofloxacin, was loaded on polyvinylpyrrolidone (PVP)-based foils and nanofiber mats using acetic acid as a solubilizer. Drug delivery kinetics, local toxicity, and antimicrobial activity were tested on an ex vivo wound model based on full-thickness human skin. Wounds of 5 mm in diameter were created on 1.5 × 1.5 cm skin blocks and treated with the investigated materials. While nanofiber mats reached the highest amount of delivered drug after 6 h, foils rapidly achieved a maximum drug concentration and maintained it over 24 h. The treatment had no effect on the overall skin metabolic activity but influenced the wound healing process, as observed using histological analysis. Both delivery systems were efficient in preventing the growth of Pseudomonas aeruginosa biofilms in ex vivo human skin. Interestingly, foils loaded with 500 µg of ciprofloxacin accomplished the complete eradication of biofilm infections with 1 × 109 bacteria/wound. We conclude that antimicrobial-loaded resorbable PVP foils and nanofiber mats are promising delivery systems for the prevention or topical treatment of infected wounds

    Synergistic Activity of Fosfomycin, Ciprofloxacin, and Gentamicin Against Escherichia coli and Pseudomonas aeruginosa Biofilms

    Get PDF
    Gram-negative (GN) rods cause about 10% periprosthetic joint infection (PJI) and represent an increasing challenge due to emergence of antimicrobial resistance. Escherichia coli and Pseudomonas aeruginosa are among the most common cause of GN-PJI and ciprofloxacin is the first-line antibiotic. Due to emergence of fluoroquinolone resistance, we evaluated in vitro the activity of fosfomycin, ciprofloxacin, and gentamicin, alone and in combinations, against E. coli and P. aeruginosa biofilms. Conventional microbiological tests and isothermal microcalorimetry were applied to investigate the anti-biofilm activity of the selected antibiotics against standard laboratory strains as well as clinical strains isolated from patients with prosthetic joint associated infections. The biofilm susceptibility to each antibiotic varied widely among strains, while fosfomycin presented a poor anti-biofilm activity against P. aeruginosa. Synergism of two-pair antibiotic combinations was observed against different clinical strains from both species. Highest synergism was found for the fosfomycin/gentamicin combination against the biofilm of E. coli strains (75%), including a gentamicin-resistant but fosfomycin-susceptible strain, whereas the gentamicin/ciprofloxacin combination presented synergism with higher frequency against the biofilm of P. aeruginosa strains (71.4%). A hypothetical bacteriolysis effect of gentamicin could explain why combinations with this antibiotic seem to be particularly effective. Still, the underlying mechanism of the synergistic effect on biofilms is unknown. In conclusion, combinatorial antibiotic application has shown to be more effective against biofilms compared to monotherapy. Further in vivo and clinical studies are essential to define the potential treatment regimen based on our results

    Effect of antibiotics against Mycoplasma sp. on human embryonic stem cells undifferentiated status, pluripotency, cell viability and growth

    Get PDF
    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of PlasmocinTM and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication) on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line) cells were effectively cured with a 14 days PlasmocinTM 25 µg/ml treatment (curative treatment) while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment) and H5 and WA09 (H9) hESCs treated with PlasmocinTM 5 µg/ml (prophylactic treatment) for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog) at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm) was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that PlasmocinTM and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal.Fil: Romorini, Leonardo. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Riva, Diego Ariel. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bluguermann, Carolina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Videla Guillermo, Richardson. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; ArgentinaFil: Scassa, Maria Elida. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sevlever, Gustavo. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miriuka, Santiago Gabriel. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Antibiotic residues and antibiotic-resistant bacteria in pig slurry used to fertilize agricultural fields

    Get PDF
    Pig manure may contain antibiotic residues, antibiotic-resistant bacteria or pathogens, which may reach the environment upon fertilization. During this study, 69 antibiotic residues belonging to 12 classes were quantified in 89 pig slurry samples. These samples were also studied for the presence of Salmonella and for E. coli resistant to meropenem, colistin, ciprofloxacin, or cefotaxim. The obtained isolates were further tested for antibacterial susceptibility. No antibiotic residues were detected in four samples, whereas in the other samples, up to 12 antibiotics were found. The most frequently detected antibiotic residues were doxycycline, sulfadiazine, and lincomycin. Doxycycline was found in the highest concentration with a mean of 1476 mu g/kg manure (range: 18-13632 mu g/kg). Tylosin and oxytetracycline were found with mean concentrations of 784 mu g/kg (range: 17-5599 mu g/kg) and 482 mu g/kg (range: 11-3865 mu g/kg), respectively. Lincomycin, had a mean concentration of 177 mu g/kg manure (range: 9-3154 mu g/kg). All other 18 antibiotic residues were found with mean concentrations of less than 100 mu g/kg manure. Fifty-one slurry samples harbored Salmonella; 35% of the Salmonella isolates were sensitive to a panel of 14 antibiotics, whereas the other 65% were resistant up to five antibiotics. For E. coli, 52 manure samples contained E. coli isolates which were resistant to ciprofloxacin and 22 resistant to cefotaxime. All ciprofloxacin and cefotaxime-resistant isolates were multi-resistant, with resistance up to nine and eight antibiotics, respectively. This research indicates that pig slurry used for fertilization often contains antibiotic residues and antibiotic-resistant bacteria, including pathogens

    Susceptibility of conjunctival bacterial pathogens to fluoroquinolones. A comparative study of ciprofloxacin, norfloxacin and ofloxacin

    Get PDF
    In order to determine the most common bacteria implicated in conjunctivitis, and the effectiveness of the antibiotic Fluoroquinolone for its treatment, a total of 50 subjects (100 ) eyes, between the ages of 1-30 years with mean age of 16.94 ± 8.06 years with infected eyes, were examined at the Lagos State University Teaching Hospital, Nigeria (LASUTH). Conjunctival swabs were collected and cultured in the laboratory to isolate the pathogens responsible for the infection. Sensitivity and antibiotic suscepticibility tests were carried out with discs impregnated with 0.3% concentration of ophthalmic topical solutions of chibroxin (Norfloxacin), ciloxan (Ciprofloxacin), and ocuflox (Ofloxacin), to ascertain the most sensitive of the three drugs. The results showed that the implicated bacteria in order of decreasing frequency were Staphylococcus aureus (34%), followed by Streptococcus pneumoniae (22%), Pseudomonas aeruginosa (14%), Klebsiella pneumoniae (12%), Hemophilus influenzae (9%), Escherichia coli (9%). All the isolated organisms were highly sensitive to the three drugs. However, a one way analysis of variance (ANOVA) showed a significant difference in the sensitivity of the three drugs (p< 0.05). ANOVA Post Hoc located Ciprofloxacin as the source of the significance. In conclusion therefore, Ciprofloxacin is the most sensitive of the three drugs and, hence should be the first choice of the fluoroquinolones for the treatment of bacterial conjunctivitis

    Effect of pH on ciprofloxacin ozonation in hospital WWTP effluent

    Get PDF
    A bubble column was used for ozonation of the quinolone antibiotic ciprofloxacin and the effect of pH was tested. Degradation at pH 7 increased the ciprofloxacin half life time to 29.1 min compared to pH 3 (26.8 min) and pH 10 (18.7 min), possibly due to increased sorption at neutral pH. Degradation product identification revealed strongest degradation at the piperazinyl substituent at pH 10 while degradation at the quinolone moiety seems promising at pH 7. For P. fluorescens and E. coli, reduction in antibacterial activity, monitored by agar diffusion tests, was in correlation with the ciprofloxacin degradation rate. For B. coagulans, however, no differences in residual antibacterial activity were found in function of pH, indicating that degradation products also affect antibacterial activity of ozonated samples
    corecore