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Ciprofloxacin reduces the stimulation of
prostaglandin E2 output by interleukin-1� in
human tendon-derived cells

A. N. Corps, V. A. Curry, R. L. Harrall, D. Dutt, B. L. Hazleman

and G. P. Riley

Objective. Fluoroquinolone antibiotics such as ciprofloxacin can induce tendon

pathology and have various effects on tendon-derived cells in culture. We are

investigating whether ciprofloxacin modifies signalling responses in tendon cells.

Methods. Human Achilles tendon-derived cells were preincubated with or without

ciprofloxacin (50�g/ml) and were then challenged with interleukin-1� (IL-1�,
1 ng/ml) for up to 48 h. Prostaglandin E2 (PGE2) output was assayed by ELISA.

The expression of cyclooxygenase-2 (COX-2) was examined by Western blotting.

Results. IL-1� stimulated a substantial and prolonged increase in the output of

PGE2. Preincubation with ciprofloxacin reduced IL-1�-induced PGE2 output at all

times tested; the reduction at 48 h was 69% (99% confidence interval 59–79%;

15 experiments). Norfloxacin and ofloxacin also reduced PGE2 output. However,

ciprofloxacin did not affect the induction of COX-2 by IL-1�, measured at 4 or 48 h.

Conclusions. Ciprofloxacin reduces IL-1�-induced PGE2 output in tendon-derived

cells. The reduction in PGE2 output could modulate various cellular activities of

IL-1�, and may be implicated in fluoroquinolone-induced tendinopathy.
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The fluoroquinolone antibiotics (ciprofloxacin, norflox-
acin, ofloxacin, pefloxacin and others) have been used to
treat a wide range of infections. Side-effects have been
reported in the gastrointestinal tract and central nervous
system [1], and additionally in cartilage and tendon [1, 2].
Tendon pain and/or rupture has been reported in a small
proportion of patients in a number of clinical studies,
Achilles tendons being the principal tendons affected [2].
Inflammation of the paratenon, disorganization of the
extracellular matrix and degenerative changes in tendon
cells have been noted in studies of fluoroquinolone-
treated animals [3–5].

While the principal target of fluoroquinolone anti-
bacterial activity is the enzyme DNA gyrase [6], several
effects of fluoroquinolones on mammalian tissues and
cells have been reported. Mitochondrial structure and
function may be compromised [5, 7–10], which may
underlie the cytotoxic and/or apoptotic effects occurring
in various cell types treated with high concentrations of

fluoroquinolones [8–10]. A non-cytotoxic reduction of
tendon cell proliferation has also been reported [11].
Fluoroquinolones may modulate the expression of
inflammatory cytokines [12–15], some of these effects
being correlated with changes in transcription factor
induction [13, 15]. Changes in the expression of extra-
cellular matrix proteins have also been observed in
organ- and cell-culture systems derived from cartilage
and tendon [7, 11, 16], and the expression of proteinases
was shown to be modulated by ciprofloxacin in canine
[11] and human tendon-derived cells [17].

We found that ciprofloxacin potentiated IL-1�-
stimulated expression of matrix metalloproteinase
(MMP)-3 (mRNA and secreted proenzyme) in human
Achilles tendon-derived cells [17]. Increased expression
of MMP-1 mRNA was also observed [17]. These
results prompted us to investigate whether ciprofloxacin
modulates IL-1�-induced signalling responses in tendon-
derived cells.
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Materials and methods

Materials
Ciprofloxacin was obtained from ICN (Basingstoke, UK), and
was freshly dissolved at 10mg/ml in 0.1 M HCl, except for some
early experiments in which ciprofloxacin was dissolved in
DMSO (as described in [17]). IL-1� was a gift from Glaxo
Wellcome (Stevenage, UK) and aliquots (1�g/ml) were stored
at –70�C. Dulbecco’s modified Eagle’s medium (DMEM), fetal
calf serum (FCS) and antibiotics were obtained from Invitrogen
(Paisley, UK). Primary antibodies against �-actin and
cyclooxygenase-2 (COX-2) were from Sigma (Poole, UK) and
Santa Cruz (Insight Biotechnology, Wembley, UK) respec-
tively. Secondary antibodies and detection reagent (CDP-Star)
were by Dako (Ely, UK) and Tropix (Roche Diagnostics,
Lewes, UK).

Cell isolation and incubation
Tendon specimens were obtained from tissue discarded
during surgery for chronic Achilles tendinopathy, with
informed patient consent and local ethical committee
approval. Cells isolated by outgrowth from separate tendon
explants were maintained and passaged in DMEM containing
10% (v/v) FCS, penicillin, streptomycin and 25 mM HEPES,
and were used between passages 4 and 10. Cells were seeded
at 105 cells/well in six-well plates and were incubated for 3
days before the experiment. They were rinsed with 2ml of
medium containing 10% FCS or in serum-free medium
containing insulin, transferrin and selenium, and were then
given 2ml of the same medium with or without ciprofloxacin
(50�g/ml). After 48 h, the cells were again rinsed and given
fresh medium containing ciprofloxacin and/or IL-1�
(1 ng/ml). Control cultures had equivalent additions of HCl
or DMSO as appropriate. After further incubation up to
48 h, the supernatant medium was removed and stored at
–20�C, and the cells were extracted for Western blotting.

Western blotting
Cells were rinsed with ice-cold balanced salts solution, and
were lysed for 15min on ice using 300�l of extraction buffer
[10mM Tris–HCl (pH7.4), 150mM NaCl, 1mM EDTA, 1mM

EGTA, 1mM Na3VO4, 50mM NaF, 20mM Na4P2O7, 1mM

PMSF (phenylmethylsulphonyl fluoride), 1�g/ml leupeptin,
1�g/ml aprotinin, 1% NP-40]. The extracts were centrifuged
to remove debris (2min at 12 000 g at 4�C) and were stored at
–70�C. Aliquots (20�l) were subjected to sodium dodecyl
sulphate–polyacrylamide gel electrophoresis under reducing
conditions, using a 10% (w/v) polyacrylamide resolving
gel with a 4.5% (w/v) stacking gel. The proteins were
electroblotted onto PVDF (polyvinylidene fluoride) mem-
branes. These were blocked, incubated with primary
antibodies, washed, incubated with secondary antibodies,
washed and developed using standard protocols.

Prostaglandin E2 assay
Samples of cell supernatants were assayed in duplicate using
a colorimetric competitive enzyme-linked immunosorbent
assay (ELISA) for prostaglandin (PG) E2 (R&D Systems,
Abingdon, UK) according to the supplier’s instructions. All
dilutions of standards and samples were performed using cul-
ture medium. The effective range of the assay was 39–5000 pg/
ml. For the analysis of early time-points, a high-sensitivity
PGE2 ELISA from the same supplier was used: the effective

range of this assay was 8–1000 pg/ml. The addition of
ciprofloxacin, DMSO or IL-1� at concentrations equivalent
to those present in the cell supernatants did not affect the
values obtained for PGE2 standards.

Replication and presentation of data
The principal effect observed (the decrease in IL-1�-
stimulated PGE2 output) was obtained in at least two
experiments with cells isolated from each of five separate
tendons. Because PGE2 output varied between experiments,
the results in each experiment were generally normalized
to the value for cells treated with IL-1� after control
preincubation, defined as 100%. Significant differences from
the 100% value were determined from the 95 or 99%
confidence intervals (CI) of the different treatments (P<0.05
and P<0.01 respectively).

Results

The basal output of PGE2 by tendon-derived cells was
close to or below the minimum detection limit of the
assay (40 pg/ml, corresponding to about 80 pg/105 cells in
48 h). In serum-free medium, PGE2 output from IL-1�-
stimulated cells remained close to the minimum detection
limit (the maximum observed being 135 pg/ml in 48 h, in
one of five separate experiments) and it was not possible
to deduce a consistent pattern of effect of ciprofloxacin
(data not shown). In contrast, when cells were incubated
in medium containing 10% FCS, IL-1� stimulated a
substantial, rapid and prolonged increase in PGE2

output (Fig. 1). There was considerable variation
between experiments in the magnitude of IL-1�-
stimulated PGE2 output, ranging between 1.2 and
65 ng/ml after 48 h (Fig. 1A; mean� S.E.M., 19� 5 ng/ml;
n¼ 15). Irrespective of the magnitude of stimulation,
pretreatment of the cells with ciprofloxacin reduced
PGE2 output in IL-1�-stimulated cells (Fig. 1A). The
reduction was 69% at 48 h compared with cells given
control pretreatment (99% CI 59–79; n¼ 15), and was
evident from early time-points (Fig. 1B), being 82% after
4 h and 68% after 8 h (95% CI 64–100 and 40–96
respectively; n¼ 3). Pretreatment with the related
fluoroquinolones norfloxacin and ofloxacin also reduced
the stimulation of PGE2 output, by 55 and 46% over 48 h
(99% CI 26–82 and 19–71 respectively; n¼ 3), but the
non-fluorinated quinolone nalidixic acid was more
variable in effect, giving 77% inhibition in one of three
experiments but no significant effect overall (data not
shown).

Because the stimulated production of PGE2 fre-
quently involves increased expression of the PGH
synthase enzyme COX-2 [18], we examined the levels of
COX-2 in tendon cells stimulated with IL-1� after
pretreatment with and without ciprofloxacin. Control
cells showed little or no immunodetectable COX-2
protein (Fig. 2). Substantial induction of COX-2
expression was stimulated by IL-1� within 4 h and
was maintained up to 48 h (Fig. 2). Ciprofloxacin did
not affect either the basal or the IL-1�-stimulated
expression of COX-2 at 4 or 48 h (Fig. 2).
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Discussion

Fluoroquinolones have been reported to have a range
of effects on mammalian cells, both in vivo and in vitro,
ranging from gross ultrastructural perturbation of
organelles such as mitochondria to specific and con-
trasting changes in gene expression (see Introduction).
We are investigating whether fluoroquinolones affect
signalling responses in human tendon cells.

As in other cell-types [19, 20], IL-1� induced a
prolonged increase in COX-2 expression and PGE2

output in human tendon fibroblasts (Figs 1 and 2).

Ciprofloxacin did not affect the expression of COX-2
after treatment with IL-1� (Fig. 2), or the IL-1�-induced
phosphorylation of the signalling kinases p54 JNK/
SAPK and p38MAPK (data not shown). These results
established that preincubation with ciprofloxacin did not
generally compromise or enhance signal transduction at
the IL-1 receptor. However, ciprofloxacin (and other
fluoroquinolones) reduced the output of PGE2 induced
by IL-1� in tendon cells by up to 90% (Fig. 1). This
reduction in PGE2 output was similar in magnitude to
that induced by low concentrations of the COX-2
inhibitors indomethacin and NS398 (data not shown).
It is possible that ciprofloxacin might also act as a
COX-2 inhibitor; alternatively, the reduction in stimu-
lated PGE2 output could be due to reduced mobilization
of arachidonic acid (the precursor for PG synthesis), by
inhibition of phospholipase activation or activity [18].
We are not aware of any data currently available that
would distinguish between these possibilities. In contrast
to our data for PGE2, an increase in PGI2 was reported
for endothelial cells treated with fluoroquinolones [9].
This may indicate either that the effect of fluoroquino-
lones on prostanoid synthesis is cell-type-specific or that
it occurs downstream of COX-2 [18].

A reduction in PGE2 output provides a mechanism by
which fluoroquinolones might affect a variety of cellular
responses. For example, the use of indomethacin to
inhibit PG production, thereby reducing feedback
inhibition, can enhance the IL-1-induced expression of
matrix-related genes, includingMMPs, in some cell types
[21, 22]. A reduction in feedback inhibition, via reduced
PGE2 output, thus seemed to be a possible explanation
for our previous observation that ciprofloxacin enhanced
MMP expression induced by IL-1� in tendon cells [17].
However, we found that indomethacin and NS398
neither mimicked nor blocked the enhancement of MMP
expression by ciprofloxacin in these cells (data not
shown), indicating that additional mechanisms must
underlie this effect.

The role of PGs in tendon physiology and pathology
is uncertain. Although non-steroidal anti-inflammatory

FIG. 1. PGE2 output by human tendon-derived cells. Cells
were pretreated for 48 h with or without ciprofloxacin, and
were then incubated with ciprofloxacin (cip) and/or IL-1�
for between 4 and 48 h. Cell supernatants were analysed by
ELISA for PGE2. (A) PGE2 output over 48 h by IL-1�-
treated cells after control pretreatment or pretreatment with
ciprofloxacin. The output from cells incubated without IL-1�
was less than 0.1 ng/ml, and is not shown. Results from 15
separate experiments. (B) Early time-course showing cells
treated with IL-1� (squares) or without IL-1� (circles), after
control pretreatment (open symbols) or pretreatment with
ciprofloxacin (filled symbols). Mean� S.E.M. from three
experiments.

FIG. 2. Expression of cyclooxygenase-2 in human tendon-
derived cells. Cells were pretreated for 48 h with or without
ciprofloxacin, and were then incubated with ciprofloxacin
(cip) and/or IL-1� for a further 4 or 48 h. Cell extracts were
analysed by Western blotting using antibodies specific for
COX-2 (upper panels) or �-actin (lower panels) as the
loading control. Similar results were obtained in two
additional experiments.
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drugs are commonly used in the treatment of tendino-
pathies, most histopathological studies have demon-
strated the non-inflammatory (degenerative) nature of
the condition, at least at the end stage of the disease [23,
24]. Furthermore, no significant increase in PG levels was
detected in the peritendinous fluid in various tendino-
pathies [25, 26]. On the other hand, levels of PGE2 were
increased in the peritendinous space in the recovery
period after strenuous exercise and there was evidence for
increased collagen degradation [27]. Similarly, tendon
cells exposed to cyclic strain in vitro showed increased
expression of PGE2, and increased DNA and protein
synthesis, compared with unstretched control cells [28].
Indomethacin inhibited PGE2 output and DNA syn-
thesis in stretched cells, but increased levels of protein
synthesis [29]. These data are consistent with the
hypothesis that PGs are implicated in the adaptive
response of the tendon, acting to modulate the
remodelling of the extracellular matrix, and interference
with this response could contribute to the tendinopathy
induced by ciprofloxacin. However, the levels of PGs in
ciprofloxacin-induced human tendinopathies have not
yet been reported. It therefore remains to be determined
whether a reduction in PG synthesis is one of the factors
contributing to ciprofloxacin-induced tendinopathy.
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