2,534,496 research outputs found

    Size-Change Termination as a Contract

    Full text link
    Termination is an important but undecidable program property, which has led to a large body of work on static methods for conservatively predicting or enforcing termination. One such method is the size-change termination approach of Lee, Jones, and Ben-Amram, which operates in two phases: (1) abstract programs into "size-change graphs," and (2) check these graphs for the size-change property: the existence of paths that lead to infinite decreasing sequences. We transpose these two phases with an operational semantics that accounts for the run-time enforcement of the size-change property, postponing (or entirely avoiding) program abstraction. This choice has two key consequences: (1) size-change termination can be checked at run-time and (2) termination can be rephrased as a safety property analyzed using existing methods for systematic abstraction. We formulate run-time size-change checks as contracts in the style of Findler and Felleisen. The result compliments existing contracts that enforce partial correctness specifications to obtain contracts for total correctness. Our approach combines the robustness of the size-change principle for termination with the precise information available at run-time. It has tunable overhead and can check for nontermination without the conservativeness necessary in static checking. To obtain a sound and computable termination analysis, we apply existing abstract interpretation techniques directly to the operational semantics, avoiding the need for custom abstractions for termination. The resulting analyzer is competitive with with existing, purpose-built analyzers

    Two-stage coaxial gas compressor

    Get PDF
    Compressor raises pressure of gases from low ambient supply during space experiments by a system of low weight, size, and power input. Dc rotary-torque motor and ball-screw drive shaft activate first and second stage of compressor, utilizing inertia forces to operate check valves

    A method for using surface tension to determine the size of holes in hardware

    Get PDF
    To check the size of small holes in injectors, flow control orifices, filters, and similar hardware, a surface tension technique is used. The liquid surface tension causes it to act as a membrane when pressure is applied. This bubble pressure is a function of hole diameter and surface tension

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let HH^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code CC^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(H),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201

    Spectral Shape of Check-Hybrid GLDPC Codes

    Full text link
    This paper analyzes the asymptotic exponent of both the weight spectrum and the stopping set size spectrum for a class of generalized low-density parity-check (GLDPC) codes. Specifically, all variable nodes (VNs) are assumed to have the same degree (regular VN set), while the check node (CN) set is assumed to be composed of a mixture of different linear block codes (hybrid CN set). A simple expression for the exponent (which is also referred to as the growth rate or the spectral shape) is developed. This expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. Furthermore, it is shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function.Comment: 6 pages, 3 figures. Presented at the IEEE ICC 2010, Cape Town, South Africa. A minor typo in equation (9) has been correcte

    On parity check collections for iterative erasure decoding that correct all correctable erasure patterns of a given size

    Full text link
    Recently there has been interest in the construction of small parity check sets for iterative decoding of the Hamming code with the property that each uncorrectable (or stopping) set of size three is the support of a codeword and hence uncorrectable anyway. Here we reformulate and generalise the problem, and improve on this construction. First we show that a parity check collection that corrects all correctable erasure patterns of size m for the r-th order Hamming code (i.e, the Hamming code with codimension r) provides for all codes of codimension rr a corresponding ``generic'' parity check collection with this property. This leads naturally to a necessary and sufficient condition on such generic parity check collections. We use this condition to construct a generic parity check collection for codes of codimension r correcting all correctable erasure patterns of size at most m, for all r and m <= r, thus generalising the known construction for m=3. Then we discussoptimality of our construction and show that it can be improved for m>=3 and r large enough. Finally we discuss some directions for further research.Comment: 13 pages, no figures. Submitted to IEEE Transactions on Information Theory, July 28, 200
    corecore