2,534,496 research outputs found
Size-Change Termination as a Contract
Termination is an important but undecidable program property, which has led
to a large body of work on static methods for conservatively predicting or
enforcing termination. One such method is the size-change termination approach
of Lee, Jones, and Ben-Amram, which operates in two phases: (1) abstract
programs into "size-change graphs," and (2) check these graphs for the
size-change property: the existence of paths that lead to infinite decreasing
sequences.
We transpose these two phases with an operational semantics that accounts for
the run-time enforcement of the size-change property, postponing (or entirely
avoiding) program abstraction. This choice has two key consequences: (1)
size-change termination can be checked at run-time and (2) termination can be
rephrased as a safety property analyzed using existing methods for systematic
abstraction.
We formulate run-time size-change checks as contracts in the style of Findler
and Felleisen. The result compliments existing contracts that enforce partial
correctness specifications to obtain contracts for total correctness. Our
approach combines the robustness of the size-change principle for termination
with the precise information available at run-time. It has tunable overhead and
can check for nontermination without the conservativeness necessary in static
checking. To obtain a sound and computable termination analysis, we apply
existing abstract interpretation techniques directly to the operational
semantics, avoiding the need for custom abstractions for termination. The
resulting analyzer is competitive with with existing, purpose-built analyzers
Two-stage coaxial gas compressor
Compressor raises pressure of gases from low ambient supply during space experiments by a system of low weight, size, and power input. Dc rotary-torque motor and ball-screw drive shaft activate first and second stage of compressor, utilizing inertia forces to operate check valves
A method for using surface tension to determine the size of holes in hardware
To check the size of small holes in injectors, flow control orifices, filters, and similar hardware, a surface tension technique is used. The liquid surface tension causes it to act as a membrane when pressure is applied. This bubble pressure is a function of hole diameter and surface tension
Stopping Set Distributions of Some Linear Codes
Stopping sets and stopping set distribution of an low-density parity-check
code are used to determine the performance of this code under iterative
decoding over a binary erasure channel (BEC). Let be a binary
linear code with parity-check matrix , where the rows of may be
dependent. A stopping set of with parity-check matrix is a subset
of column indices of such that the restriction of to does not
contain a row of weight one. The stopping set distribution
enumerates the number of stopping sets with size of with parity-check
matrix . Note that stopping sets and stopping set distribution are related
to the parity-check matrix of . Let be the parity-check matrix
of which is formed by all the non-zero codewords of its dual code
. A parity-check matrix is called BEC-optimal if
and has the smallest number of rows. On the
BEC, iterative decoder of with BEC-optimal parity-check matrix is an
optimal decoder with much lower decoding complexity than the exhaustive
decoder. In this paper, we study stopping sets, stopping set distributions and
BEC-optimal parity-check matrices of binary linear codes. Using finite geometry
in combinatorics, we obtain BEC-optimal parity-check matrices and then
determine the stopping set distributions for the Simplex codes, the Hamming
codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201
Spectral Shape of Check-Hybrid GLDPC Codes
This paper analyzes the asymptotic exponent of both the weight spectrum and
the stopping set size spectrum for a class of generalized low-density
parity-check (GLDPC) codes. Specifically, all variable nodes (VNs) are assumed
to have the same degree (regular VN set), while the check node (CN) set is
assumed to be composed of a mixture of different linear block codes (hybrid CN
set). A simple expression for the exponent (which is also referred to as the
growth rate or the spectral shape) is developed. This expression is consistent
with previous results, including the case where the normalized weight or
stopping set size tends to zero. Furthermore, it is shown how certain symmetry
properties of the local weight distribution at the CNs induce a symmetry in the
overall weight spectral shape function.Comment: 6 pages, 3 figures. Presented at the IEEE ICC 2010, Cape Town, South
Africa. A minor typo in equation (9) has been correcte
On parity check collections for iterative erasure decoding that correct all correctable erasure patterns of a given size
Recently there has been interest in the construction of small parity check
sets for iterative decoding of the Hamming code with the property that each
uncorrectable (or stopping) set of size three is the support of a codeword and
hence uncorrectable anyway. Here we reformulate and generalise the problem, and
improve on this construction. First we show that a parity check collection that
corrects all correctable erasure patterns of size m for the r-th order Hamming
code (i.e, the Hamming code with codimension r) provides for all codes of
codimension a corresponding ``generic'' parity check collection with this
property. This leads naturally to a necessary and sufficient condition on such
generic parity check collections. We use this condition to construct a generic
parity check collection for codes of codimension r correcting all correctable
erasure patterns of size at most m, for all r and m <= r, thus generalising the
known construction for m=3. Then we discussoptimality of our construction and
show that it can be improved for m>=3 and r large enough. Finally we discuss
some directions for further research.Comment: 13 pages, no figures. Submitted to IEEE Transactions on Information
Theory, July 28, 200
- …
